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1. Topological Spaces and Continuous Functions

1.1. Topological Spaces

Definition 1.1 (topology). Let X be a set. A topology on X is a collection T of subsets of X

such that

(i) /0,X ∈ T
(ii) The arbitrary union of members of T belongs to T , i.e.

{Uα}α∈I ∈ T implies
⋃
α∈I

Uα ∈ T .

(iii) The intersection of any finite members of T belongs to T , i.e.

{U1, . . . ,Un} ∈ T implies
n⋂

i=1

Ui ∈ T .

If the above-mentioned three conditions are satisfied, we say that (X ,T ) is a topological space.

A subset U ⊆ X is open if U ∈ T .

Example 1.1 (trivial topology). Let X be any set and T = { /0,X}. Then, T is called the trivial

topology of X .

Example 1.2 (discrete topology). Let X be any set and T be the collection of subsets of X . Then,

T is the discrete topology of X .

Example 1.3 (cofinite topology). Let X be any set and

T = {X\U : U ⊆ X is finite}∪{ /0} .

This is known as the cofinite topology of X since we are considering all sets X\U such that its

complement in X , which is U , is finite.

Example 1.4 (cocountable topology). Let X be any set and

T = {U : U is open if U = /0 or X\U is countable.}

This is known as the cocountable topology of X .

Example 1.5 (cocountable topology on R). An example of a cocountable topology can be

constructed using any uncountable set X . Take X = R. In the cocountable topology on R, the open

sets are defined as follows: /0 is an open set and any set U ⊆ R such that R\U , which is countable, is

also an open set. In other words, the latter means that U is open if its complement in R is countable.

By definition, /0 is open. R is open in R since R\R = /0, which is countable. Any open interval,

say (0,1), is not open in the cocountable topology since its complement, R\(0,1) = (−∞,0]∪ [1,∞),

is uncountable. However, a set like R\Q (the irrational numbers) is open because its complement Q
is countable.
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We conclude that the cocountable topology on R consists of /0,R, and all subsets of R whose

complements are countable.

Example 1.6. Let X = R and

T = {(−α,α) : α > 0}∪{X , /0} .

Then, (X ,T ) is a topological space. Note that the infinite intersection of T does not belong to T , i.e.
∞⋂

n=1

(
−1− 1

n
,1+

1
n

)
= [−1,1] ̸∈ T .

Example 1.7. Let X = {a,b,c} and

T = {{a} ,{a,b} , /0,X} .

Then, (X ,T ) is a topological space.

1.2. Describing Topologies

Definition 1.2 (basis for topology). Let X be a set. A basis for a topology of X is a collection

B of a subset of X such that the following hold:

(i) B covers X , i.e. for all x ∈ X , there exists B ∈ B such that x ∈ B

(ii) for all x ∈ X and B1,B2 ∈ B such that x ∈ B1 ∩B2, there exists B ∈ B such that x ∈ B ⊆
B1 ∩B2

The collection of sets T generated by B is the set

T = {U ⊆ X : ∀x ∈U,∃B ∈ B such that x ∈ B ⊆U} .

We say that B is a basis for T .

Lemma 1.1. If B1, . . . ,Bn ∈ B and x ∈ B1 ∩ . . .∩Bn, then there exists B ∈ B such that

x ∈ B ⊆
n⋂

i=1

Bi.

Proof. We proceed with induction on n. The base case is n = 1, which is obvious by taking B = B1.

Suppose B1, . . . ,Bn ∈ B and x ∈ B1 ∩ . . .∩Bn. Then, we have x ∈ B1 ∩ . . .∩Bn−1. By the induction

hypothesis, there exists B′ ∈ B such that

x ∈ B′ ⊆
n−1⋂
i=1

Bi.

Since B′,Bn ∈ B and x ∈ B′∩Bn, then by Definition 1.2, there exists B ∈ B such that

x ∈ B ⊆ B′∩Bn ⊆
n⋂

i=1

Bi

and the proof is complete.



MA3209 METRIC AND TOPOLOGICAL SPACES Page 5 of 65

Proposition 1.1. T is a topology.

Proof. By Definition 1.2, it is clear that /0,X ∈ T .

Suppose {Uα}α∈I ⊆ T . Given

x ∈
⋃
α∈I

Uα , there exists at least one αx ∈ I such that x ∈Uαx .

By the definition of T , there exists B ∈ B such that

x ∈ B ⊆Uαx ⊆
⋃
α∈I

Uα which implies
⋃
α∈I

Uα ∈ T .

Suppose U1, . . . ,Un ∈ T . Given

x ∈
n⋂

i=1

Ui then x ∈Ui for all 1 ≤ i ≤ n.

This shows that for all 1 ≤ i ≤ n, there exists Bi ∈ B such that x ∈ Bi ⊆Ui. Then, by Lemma 1.1, this

shows that there exists B ∈ B such that

x ∈ B ⊆
n⋂

i=1

⊆
n⋂

i=1

Ui so
n⋂

i=1

Ui ∈ T .

Example 1.8. Let X be a set. Show that if B is a basis of topology T , then T equals the collection

of all unions of elements in B.

Solution. Suppose B is a basis of T . Then,

T = {U ⊆ X : ∀x ∈U,∃B ∈ B such that x ∈ B ⊆U} .

We wish to prove that

U =
⋃

x∈U

Bx.

Given B ∈ B, for any x ∈ B, we have x ∈ B ⊆ B, so B is an open set. Hence, B ⊆ T . Since T is a

topology, it is closed under arbitrary unions, so⋃
B∈B

B ∈ T .

Conversely, let U ∈ T . Since U is an open set, given x ∈U , there exists B ∈ B such that x ∈ Bx ⊆U .

So, ⋃
x∈U

Bx ⊆U.

Since

Bx ⊆
⋃

x∈U

Bx for all x ∈U then U ⊆
⋃

x∈U

Bx.

□
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Example 1.9 (open balls). Let X = Rn. Then for any x = (x1, . . . ,xn) ∈ Rn and r > 0, define

Br(x) = {y = (y1, . . . ,yn) ∈ Rn :
√
(x1 − y1)2 + · · ·+(xn − yn)2 < r}.

Prove that B = {Br(x) : x ∈ Rn,r ∈ R+} is a basis on Rn.

Here, the topology on Rn generated by B is the standard topology.

Solution. This problem essentially states that open balls in Rn form a basis for the topology on a

metric space. Recall that a basis for a topology of a set X is a collection B ⊆ X such that B covers X

(i.e. ∀x ∈ X ,∃B ∈ B such that x ∈ B) and ∀x ∈ X and Br1,Br2 ∈ B such that x ∈ Br1 ∩Br2 , there exists

Br3 ∈ B such that x ∈ Br3 ⊆ Br1 ∩Br2 .

Refer to the following diagram:

r = min{r1 −∥x− x1∥ ,r2 −∥x− x2∥}

x

x1

r1
Br1

x2 r2
Br2

Br3

Suppose x ∈ Rn. Then, we can choose the r-ball centred at x, where r > 0 to be in our basis such that

x ∈ B. Since x is arbitrary, then B covers Rn. To prove the second property, suppose for all x1,x2 ∈ X ,

there exist Br1 (x1) ,Br2 (x2) such that x ∈ Br1 ∩Br2 . Then, we can find Br3 ∈ B such that x ∈ Br3 . In

particular, we can choose x ∈Rn can be arbitrarily chosen and r = min{r1 −∥x− x1∥ ,r2 −∥x− x2∥}.

□
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Definition 1.3 (finer and coarser topologies). Let X be a set and T ,T ′ be topologies on X .

We say that

T is finer than T ′ if and only if T ′ ⊆ T.

Conversely, T ′ is coarser than T .

Example 1.10. Let X = R and define T ,T ′ to be the following:

T =
{
(−α,α) : α ∈ R+

}
∪{ /0,R} and T ′ = standard topology on R.

By the standard topology, we mean that T ′ is generated by the open intervals (a,b), where a < b and

a,b ∈ R, meaning that it includes any arbitrary open interval as well as unions of such intervals.

As such, T ′ is finer than T and conversely, T is coarser than T ′.

Remark 1.1. The topology generated by a basis B is the coarsest topology that contains B.

Proposition 1.2. Let

B,B′ be based for the topologies T ,T ′ respectively on X ..

Then, the following are equivalent:

(1) T ′ is finer than T
(2) for all B ∈ B, for all x ∈ B, there exists B′ ∈ B′ such that x ∈ B′ ⊆ B

Proof. We first prove (1) implies (2). Suppose B ∈ B is arbitrary. Then, because T ′ is finer than T ,

then T ⊆ T ′, so it follows that B ∈ T ⊆ T ′. Recall that B′ is a basis for T ′, so for every x ∈ B, there

exists B′ ∈ B′ such that x ∈ B′ ⊆ B.

We then prove (2) implies (1). Suppose U ∈ T and x ∈U . Since B is a basis for T , then there exists

B ∈ B such that x ∈ B ⊆U . By assumption, there exists B′ ∈ B′ such that x ∈ B′ ⊆ B ⊆U . Since x was

chosen arbitrarily, then U ∈ T ′ so T ⊆ T ′.

Example 1.11 (arithmetic progression topology). An arithmetic sequence on Z is a set of the form

S(a,b) := {an+b : n ∈ Z},

where a,b ∈N, a > 0. Define on X = Z the collection of sets T in which the non-empty open sets are

the unions of arithmetic sequences. Show that T is a topology on X .

Solution. We need to show the following:

(i) /0,X ∈ T
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(ii) for Y1, . . . ∈ T , we have

∞⋃
n=1

Yn ∈ T and
N⋂

n=1

Yn ∈ T .

By definition, /0 ∈ T since the empty set is the union of no arithmetic sequences; X = Z ∈ T since we

can set a = 1 and b = 0. Hence, (i) is satisfied. Next, let Y1, . . . ,YN ∈ T . That is to say, Y1, . . . ,YN are

the non-empty open sets, and they are also the unions of arithmetic sequences, i.e.

Y1 =
⋃

i1∈I1

S(ai1,bi1) Y2 =
⋃

i2∈I2

S(ai2,bi2) so in general, Yn =
⋃

in∈In

S(ain ,bin).

Hence,

Y1 ∩ . . .∩YN =
⋃

ik∈Ik∀1≤k≤N

S(ai1,bi1)∩ . . .∩S(aiN ,biN )

The intersection S(ai1,bi1)∩ . . .∩ S(aiN ,biN ) is either empty or another arithmetic sequence. To see

why, suppose S(ai1 ,bi1)∩ . . .∩S(aiN ,biN ) ̸= /0. Then, use strong induction to conclude that T is closed

under finite intersection (lazy to fill in the details for now). Hence, (ii) is satisfied. Also,
∞⋃

n=1

Yn =
∞⋃

n=1

⋃
ik∈Ik∀k∈N

S(ai1,bi1)∪ . . .∪S(aiN ,biN )

which is the union of arithmetic sequences, so (iii) is satisfied. □

The interested reader can read up the Furstenberg topology and Golomb topology, which are

used to prove the infinitude of primes, as well as Dirichlet’s theorem on the infinitude of primes

respectively.

Example 1.12 (MA3209 AY24/25 Sem 1 Homework 2). Let C be a collection of subsets of X .

Assume that /0,X ∈ C and that finite unions and arbitrary intersections of sets in C are in C. Show that

T = {X \C : C ∈ C} is a topology on X

and the collection of closed sets in this topology is C.

Solution. First, we note that /0,X ∈ T . Next, suppose U1, . . . ∈ C. Then,

N⋃
n=1

Un ∈ C and
∞⋂

n=1

Un ∈ C.

Suppose X\U1, . . . ∈ T . Then,
∞⋃

n=1

(X\Un) = X\
∞⋂

n=1

Un ∈ X\C = T .

Similarly,

N⋂
n=1

(X\Un) = X\
N⋃

n=1

Un ∈ X\C = T .

This shows that T is closed under arbitrary union and finite intersection. □
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Example 1.13 (MA3209 AY24/25 Sem 1 Homework 1). Order the following topologies on X =

[0,1] according to finer/coarser:

(i) the trivial topology;

(ii) the discrete topology;

(iii) Euclidean topology;

(iv) the co-finite topology;

Compare the cocountable topology with the topologies that is comparable in the above list.

Solution. We recall the following: the trivial topology T can be regarded as { /0,X}; the discrete

topology can be regarded as the collection of subsets of X ; the Euclidean topology is the standard

topology inherited from R; the co-finite topology refers to the collection of subsets { /0}∪X\U , where

U ⊆ X is finite.

Note that [0,1] is an uncountable set and

[0,1] is equinumerous to R

so the collection of subsets of [0,1] is equinumerous to P(R). Hence, it is clear that the discrete

topology is the finest, whereas the trivial topology is the coarsest.

We then order the Euclidean and co-finite topologies with respect to the other two. Obviously, both

topologies are finer than the trivial topology but coarser than the discrete topology. We claim that

the Euclidean topology is finer than the co-finite topology. Consider some element in the co-finite

topology, i.e. U is contained in the co-finite topology such that [0,1]\U is finite. Consider a subset

(a,b)⊆ [0,1] where 0 ≤ a < b ≤ 1.

Then, the complement of (a,b) in [0,1] is [0,a)∪(b,1], which is uncountable. Hence, (a,b) is not open

in the cofinite topology since its complement is not finite. Hence, for the first part of the problem, our

comparison is as follows:

trivial topology ⊆ co-finite topology ⊆ Euclidean topology ⊆ discrete topology

For the second part of the problem, our comparison is as follows:

trivial topology ⊆ co-finite topology ⊆ cocountable topology ⊆ discrete topology

As such, it suffices to prove the following results:

• the Euclidean topology T1 is not comparable with the cocountable topology T2

• the cocountable topology is finer than the co-finite topology

For the first result, suppose we have some element of T1, say open intervals (a,b), where 0 ≤ a <

b ≤ 1. Similar to an argument made earlier when we were comparing the co-finite topology with the

Euclidean topology, we have T1 ⊊ T2. Conversely, take some element of T2, say R\{1/n : n ∈ N}.
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Note that its complement in R, which is {1/n : n ∈ N}, is countable. Then, the set R\{1/n : n ∈ N}
is not open in T1 as 0 ∈ T1 but all neighbourhoods of intersect an element of T c

1 .

Lastly, we show that the cocountable topology is finer than the co-finite topology. Consider some

element U of the co-finite topology. Then, X\U is finite, which is also countable. It follows that U is

also an element of the cocountable topology. □

Definition 1.4 (subbasis). A subbasis S of a set X is a collection of subsets of X whose union

equals X . The topology generated by S is a collection T of all unions of finite intersection of

sets in S.

Proposition 1.3. The topology generated by a subbasis S is a topology.

Proof. Here, we define a subbasis S of a set X to be a collection of subsets of X whose union equals

X . The topology generated by S is a collection T of all unions of finite intersections of sets in S.

Since S is a subbasis of X , then⋃
S = X so X can be written as a union of elements in S

As such, X ∈ T . The empty set /0 can also be written as an empty union which is also an element of

T . So, /0,X ∈ T .

We then prove that T is closed under arbitrary unions. Suppose {Uα}α∈I is a collection of sets in

T . Then, each Uα is a union of finite intersections of sets in S. So,⋃
α∈I

Uα is also a union of finite intersections of sets in S which implies
⋃
α∈I

Uα ∈ T .

Lastly, we prove that T is closed under finite intersections. Suppose U1, . . . ,Un ∈ T . Then, each Ui

can be written as a union of finite intersections of sets in S. So, U1 ∩ . . .∩Un can also be written as a

union of finite intersections of sets in S.

1.3. Metric Spaces

Definition 1.5 (metric). A metric/distance on a set X is a function d : X ×X → R such that

the following conditions are satisfied:

(i) Non-negativity: d (x,y)≥ 0 for all x,y ∈ X

(ii) Positive definiteness: d (x,y) = 0 if and only if x = y

(iii) Symmetry: d (x,y) = d (y,x) for all x,y ∈ X

(iv) Triangle inequality: d (x,z)≤ d (x,y)+d (y,z) for all x,y,z ∈ X

If the mentioned conditions are satisfied, then (X ,d) is a metric space.
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Definition 1.6 (pseudometric). If (i), (iii) and (iv) of Definition 1.5 are satisfied and d (x,x) =

0 for all x ∈ X , then the corresponding function d will be a pseudometric.

Example 1.14. Let F ([0,1]) be the space of real-valued functions defined on [0,1]. Then, for any

f ,g ∈ F ([0,1]) , we define d ( f ,g) = | f (0)−g(0)| .

Here, d is a pseudometric on F ([0,1]).

Example 1.15 (pseudometric but not metric). Note that every metric space is also a pseudometric

space. However, the converse is not true. For example, let X be the set such that |X |> 1. Consider the

function

d : X ×X → R where d(x,y) = 0.

Clearly, d is a pseudometric but it is not a metric as we can have distinct x,y ∈ X but d(x,y) = 0.

Definition 1.7 (quasimetric). If (i), (ii) and (iv) of Definition 1.5 hold, the corresponding

function d will be a quasimetric.

Example 1.16. We have

d (x,y) =

x− y if x ≥ y;

1 otherwise
being a quasimetric on reals.

Example 1.17 (discrete metric). Suppose X is a set. Define

d : X ×X → R where d (x,y) =

1 if x ̸= y;

0 if x = y.

This is called the discrete metric.

Definition 1.8 (norm). Let F be a field (for example, R or C). A norm on an F-vector space

V is a function

∥·∥ : V → R

which satisfies the following:

(i) Non-negativity: ∥x∥ ≥ 0 for all x ∈V

(ii) Positive definiteness: ∥x∥= 0 if and only if x = 0

(iii) Absolute homogeneity: ∥λx∥= |λ |∥x∥ for all λ ∈ F and x ∈V

(iv) Triangle inequality: ∥x+ y∥ ≤ ∥x∥+∥y∥ for all x,y ∈V

Here are some examples of norms.
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Example 1.18 (Euclidean norm). Let V = Rn. Define the L2-norm or the Euclidean norm to be the

following:

∥x∥2 =
√

x2
1 + . . .+ x2

n for all x = (x1, . . . ,xn) ∈ Rn

Example 1.19 (Hermitian norm). Let V =Cn. Similar to Example 1.18 on the Euclidean norm, we

define

∥x∥2 =
√

x1x1 + . . .+ xnxn for all x = (x1, . . . ,xn) ∈ Cn.

This is said to be the Hermitian norm. In fact, the use of the word Hermitian is not surprising — recall

from MA2101 that a matrix A =
(
ai j
)

is Hermitian if and only if it is equal to its conjugate transpose,

i.e. ai j = a ji.

Example 1.20 (p-norm). Let V = Fn, where F is an arbitrary field. Suppose p ≥ 1. Then, define

the p-norm to be the following:

∥x∥p = (|x1|p + . . .+ |xn|p)1/p for all x ∈ Fn

Example 1.21 (infinity norm/supremum norm). Let V = Fn. Define the supremum norm to be the

following:

∥x∥
∞
= max{|x1| , . . . , |xn|} for all x ∈ Fn

Remark 1.2. The metric induced by the Euclidean norm is known as the Euclidean metric.

The same relationship can be said for the other three metrics and norms that we discussed.

Proposition 1.4. Every norm ∥·∥ on V induces a metric d on V by

d (x,y) = ∥x− y∥ for all x,y ∈V.

The proof of Proposition 1.4 is trivial.

Definition 1.9 (Hausdorff metric). Let X be the space of all closed subsets of the Euclidean

space Rn. Let

Bε(A) =
⋃
a∈A

Bε(a) be an ε-neighbourhood of the set A.

Define the Hausdorff metric, dH (A,B) to be the following:

dH(A,B) = inf{ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)}

Example 1.22 (MA3209 AY24/25 Sem 1 Homework 1). Let X be the space of all closed subsets of

the Euclidean space Rn. Let

Bε(A) =
⋃
a∈A

Bε(a) be an ε-neighbourhood of the set A.
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Show that the so-called Hausdorff metric

dH(A,B) = inf{ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)}

is indeed a metric on X .

Solution. By definition, A ⊆ Bε(B) and B ⊆ Bε(A) imply that A is contained in an ε-neighbourhood of

B and B is contained in an ε-neighbourhood of A. We wish to prove that dH satisfies non-negativity,

symmetry, and the triangle inequality.

• Non-negativity: Since dH(A,B) is derived from distances between points in A and B,

dH(A,B)≥ 0.

• Symmetry: We have

dH(B,A) = inf{ε > 0 : B ⊆ Bε(A) and A ⊆ Bε(B)}

= inf{ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)}= dH(A,B)

• Triangle inequality: By definition, we have

dH(A,B) = inf{ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)}

dH(B,C) = inf
{

ε
′ > 0 : B ⊆ Bε ′(C) and C ⊆ Bε ′(B)

}
We wish to prove that

dH(A,C) = inf
{

ε
′′ > 0 : A ⊆ Bε ′′(C) and C ⊆ Bε ′′(A)

}
≤ dH(A,B)+dH(B,C).

Suppose x ∈ A. Then, x ∈ Bε(B). So, x ∈ Bε(b) for some open ball of radius ε centred at b, i.e.

there exists b ∈ B such that d(x,b)< ε . Since b ∈ B ⊆ Bε ′(C), then there exists c ∈C such that

d(b,c) < ε ′. Since the distance function is a metric, then by the triangle inequality, it follows

that

d(x,c)≤ d(x,b)+d(b,c)< ε + ε
′ which implies A ⊆ Bε+ε ′(C)

In a similar fashion, one can prove that C ⊆ Bε+ε ′(A). Choosing ε ′′ = ε + ε ′ and taking

infimimums yields the desired inequality.

Example 1.23. Is the Hausdorff metric dH also a metric on the space of all subsets of Rn? Justify

your answer.

Solution. No. Let X be the space of all subsets of R. Suppose A = {1} and B = R.

dH(A,B) = inf{ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)}= ∞.

In general, we can let X be some Euclidean space Rn and let A,B ⊆ X be unbounded sets. □
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Example 1.24 (Graph Theory). Let X denote the set of vertices of a graph G and d (x,y) denote the

length of the shortest path between x and y. Then, d is indeed a metric.

0

1

7

6
2

9

8

3

10

11

4

12 13

514

15

For example, we can consider our graph G to be the tree above. Set X = {0,1,2, . . . ,15}. For example,

the triangle inequality is satisfied because d (5,9)≤ d (5,4)+d (4,9).

Example 1.25 (p-adic metric). Let X =Q and p be a prime number. Then,

for all x ∈Q\{0} , there exists a unique k ∈ Z such that x =
pkr
s
,

where r,s ∈ Z which are not divisible by p.

Then, define

|x|p =

p−k if x = pkr/s as above;

0 if x = 0.

Define d (x,y) = |x− y|p, which is called the p-adic metric.

Proposition 1.5 (p-adic metric). |·|p is a norm on the rational numbers and d(x,y) is a metric.

Remark 1.3 (ultrametric). In fact, the p-adic metric satisfies the strong triangle inequality, i.e.

d (x,z)≤ max{d(x,y),d(y,z)} for all x,y,z ∈Q.

Such metrics are called ultrametrics.

We now prove Proposition 1.5.

Proof. To show that |·|p is a norm, we need to prove that it is non-negative, absolutely homogeneous,

and satisfies the triangle inequality. We will only prove that it satisfies the triangle inequality. Note
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that

|x|p =

p−k if x = pkr/s;

0 if x = 0
and |y|p =

p−m if y = pmr′/s′;

0 if y = 0

If x = 0 or y = 0, then the proof is quite trivial. Suppose for all x,y ∈ Q\{0}, there exist unique

k,m ∈ Z, where k ≤ m, such that x = pkr/s and y = pmr′/s′. Hence,

x+ y =
pkr
s

+
pmr′

s′
=

pkrs′+ pmr′s
ss′

= pk
(

rs′+ pm−kr′s
ss′

)
so, |x+ y|p = p−k ≤ max

{
|x|p , |y|p

}
. Here, we proved the strong triangle inequality.

We then prove that d(x,y) is a metric. Again, we only justify that the triangle inequality holds as

the other properties are rather trivial. By definition, we have d(x,y) = |x− y|p and d(y,z) = |y− z|p,

or rather,

|x− y|p =

p−k1 if x− y = pk1r1/s1;

0 if x− y = 0
and |y− z|p =

p−k2 if y− z = pk2r2/s2;

0 if y− z = 0.

Say k1 ≤ k2. We then use the trick that x−z=(x−y)+(y−z) so deduce that |x− z|p = p−k1 and so this

is bounded above by |x− y|p+ |y− z|p (or we can use the strong triangle inequality to conclude).

Definition 1.10 (Minkowski distance). Let V = Rn and p ≥ 1. We define for all x,y ∈V ,

dp(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

to be the Minkowski distance.

Example 1.26 (MA3209 AY24/25 Sem 1 Homework 1). Based on Definition 1.10

dp(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

,

Prove that dp is really a metric for every p ≥ 1.

Solution. We will only verify that dp satisfies the triangle inequality. By definition,

dp(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

and dp(y,z) =

(
n

∑
i=1

|yi − zi|p
)1/p

.

Then, dp(x,z)≤ dp(x,y)+dp(y,z) by Minkowski’s inequality. In fact, Minkowski’s inequality can be

deduced using Hölder’s inequality. □

Example 1.27 (MA3209 AY24/25 Sem 1 Homework 1). Let

ℓp =

{
{xn}n∈N : xn ∈ C and

∞

∑
n=1

|xn|p < ∞

}
.

This is related to the p-norm in Functional Analysis. Prove that ℓp ⊆ ℓq for all 1 ≤ p ≤ q.
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Solution. Note that p,q ∈ R such that 1 ≤ p ≤ q. Suppose xn ∈ ℓp. Then,

xn is a sequence of complex numbers such that
∞

∑
n=1

|xn|p is finite.

So, the sum of |xn|p is convergent, which implies that there exists N ∈ N such that for all x ≥ N, we

have |xN |p < 1. So, |xN |q < 1 since q ≥ p. In fact, |xN |q ≤ |xN |p. This implies that

∑
n≥N

|xn|q ≤ ∑
n≥N

|xn|p

∞

∑
n=1

|xn|q ≤
N−1

∑
n=1

|xn|q + ∑
n≥N

|xn|p ≤ (N −1)max(|x1|q, . . . , |xN−1|q)+ ∑
n≥N

|xn|p

which is the sum of a finite quantity and a finite sum. □

Definition 1.11 (distance and diameter). Let A,B be non-empty subsets of a metric space

(X ,d).

(i) The distance between A and B is

d (A,B) = inf{d (x,y) : x ∈ A,y ∈ B} .

(ii) The diameter of A ⊆ X is

diam(A) = sup{d (x,y) : x,y ∈ A} .

Definition 1.12 (bounded set). A set A ⊆ X is bounded if diam(A)< ∞.

Definition 1.13 (metrizability). The topology on X induced by a matrix d is the topology

generated by Bd . A topology on X is metrizable if there exists a metric on X that induces T .

1.4. Subspaces of Topological Spaces

Definition 1.14 (subspace topology). Let (Y,TY be a topological space and X ⊆Y be a subset.

Then,

TX = {U ∩X : U ∈ TY} is the subspace topology on X .

Definition 1.15. Let (Y,TY ) be a topological space, X ⊆ Y and TX is the subspace topology.

Then, X is a subspace of Y with respect to this topology TX .

Definition 1.16 (restriction). Let A ⊆ (X ,d), where (X ,d) is a metric space. Then, the

restriction of d to A is the metric

dA (x,y) = d (x,y) .
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1.5. Closed Sets, Closure and Limit Points

Definition 1.17 (closed set). Let (X ,T ) be a topological space. A subset A ⊆ X is closed if

X\A ∈ T .

Example 1.28 (closed intervals in R). The closed interval [a,b] ⊆ R is closed with respect to the

standard topology of R.

Example 1.29. Let

X = [0,1]∪ (2,3)⊆ R.

Then, [0,1] is both open and closed in X with respect to the subspace topology of X inherited from

the standard topology of R.

To see why [0,1] is open in X , we need to find an open set U ⊆ R such that [0,1] = U ∩X . For

example, we can choose U = (−1,2). On the other hand, to see why [0,1] is closed in X , we need to

show that the complement of [0,1] is open in X , i.e. (2,3) is indeed open in X .

Definition 1.18 (interior, closure, boundary). Let (X ,T ) be a topological space and A ⊆ X .

Then,

(a) The interior of A is

int(A) = A◦ =
⋃

U∈T ,U⊆A

U.

(b) The closure of A is

cl(A) = A =
⋂

X\G∈T ,A⊆G

G.

(c) The boundary of A is

bd(A) = ∂A = A\A◦ = cl(A)\ int(A) .

Proposition 1.6. We have the following obvious results:

(1) A◦ ⊆ A ⊆ A

(2) A◦ = A if and only if A is open

(3) A = A if and only if A is closed

Example 1.30. Every point of an open interval (a,b)⊆ R is an interior of (a,b).

Example 1.31. The empty set /0 ⊆R is trivially an open set because there exists no point in /0. Also,

the real line R is itself an open set because every point in R is an interior point of R.

Example 1.32. Let X be the real line space R and A = (0,1]⊆ R. Then, ∂A = {0,1}.
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Example 1.33. Let A = {(x,y) ∈ R2 : 0 < x ≤ 1,0 < y ≤ 1}. Prove

A◦ = {(x,y) ∈ R2 : 0 < x < 1,0 < y < 1},

A = {(x,y) ∈ R2 : 0 ≤ x ≤ 1,0 ≤ y ≤ 1},

∂A = ([0,1]×{0})∪ ([0,1]×{1})∪ ({0}× [0,1])∪ ({1}× [0,1]).

Solution. To find A◦, we consider the union of all open sets U that are contained in A. That is,

A◦ =
⋃

U∈T ,U⊆A

U

so we note that the boundaries x = 1 and y = 1 cannot be part of any open set U . Suppose

otherwise, then any ε-neighbourhood would contain points outside of A. So, the first result follows.

To put it more rigorously, note that (x,y) = (1/2,1/2) ∈ A. Then, there exists ε > 0 such that

(x− ε,x+ ε)× (y− ε,y+ ε) ∈ (0,1)× (0,1), i.e. ε = 1/2. In fact, this is the largest open interval

that is contained in A.

Then, recall that the closure

A =
⋂

G∈T ,A⊆G

G.

A must include the boundary points x = 0 and y = 0 since any closed set containing A includes the

boundary points. As we take the intersection of all such closed sets, the result follows. Again, to put

it more rigorously, consider an arbitrary closed set G that contains A, i.e.

G = [a− c,a+ c]× [b−d,b+d]⊇ (0,1]× (0,1] = A

where

a− c ≤ 0 < 1 ≤ a+ c and b−d ≤ 0 < 1 ≤ b+d.

Taking the intersection over all such G, we can consider finding the smallest closed subset of G that

contains A, which is [0,1], i.e. set a = c = b = d = 1/2. Hence, the second result follows.

Suppose v ∈ ∂A = A−A◦. Then, v ∈ A but v ̸∈ A◦, i.e. v ∈ [0,1]× [0,1] but v ̸∈ (0,1)× (0,1). Recall

that for any sets A,B,C,D, the identity

(A×B)\(C×D) = (A× (B\D))∪ ((A\C)×B)

holds. Setting A = B = [0,1] and C = D = (0,1), the result follows. □

Definition 1.19 (limit point). Let X be a topological space and A ⊆ X . A point x ∈ X is a limit

point of A if every open U ⊆ X containing x intersects A\{x}.
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Example 1.34. Let A = {0}∪ (1,2)⊆ R. This set has [1,2] as its set of limit points with respect to

the standard topology of R. However, 0 is not a limit point of A. To see why, we can consider the open

interval (−1/2,1/2), which does not intersect with A\{0}.

In fact, any x ∈ R\({0}∪ [1,2]) is not a limit point of A. To see why, the open set (−∞,0)∪ (0,1)∪
(2,∞), which is the union of open intervals, contains the above x but does not intersect A\{x}= A.

As mentioned, every x ∈ [1,2] is a limit point of A. To see why, note that for all a,b ∈ R such that

a < x < b, note that

(a,b)∩ (1,2) is infinite and (a,b)∩ (A\{x}) ̸= /0.

Recall that for all U ⊆ R, U is open and for all x ∈ U , there exist a,b ∈ R such that x ∈ (a,b) ⊆ U .

This shows that U ∩ (A\{x}) ̸= /0.

On the other hand, if X is equipped with the discrete topology, then all subsets of X have no limit

points.

Example 1.35. Find all the limit points of the following subsets of R:

(a)
{ 1

m + 1
n : m,n = 1,2, . . .

}
.

(b)
{ sinn

n : n = 1,2, . . .
}

.

Solution.

(a) When m = n = 1, we see that 2 is an element of the set. As m → ∞ or n → ∞, the sequence

1/m+1/n is decreasing and tends to 0. So, we conclude that 0 is a limit point. In fact, it is the

only limit point.

To put it more rigorously, using Definition 1.19, say x ∈ X is a limit point of the sequence.

Then, let U ⊆ X be an open set containing x, i.e. there exists ε > 0 such that (x− ε,x+ ε)⊆U .

Note that the open set contains x. Since (x− ε,x+ ε)∩ (A\{x}) ̸= /0, then there exists m,n ∈ N
(without loss of generality, assume m ≥ n > 0) such that

−ε =
1
m
+

1
n

or ε =
1
m
+

1
n
.

However, ε > 0 so we reject the first case. Working with the second case, we have

ε =
m+n

mn
≥ m+m

mn
=

2
n

so we can choose n ≥
⌈

2
ε

⌉
.

As mentioned, only x = 0 is the limit point of the sequence.

(b) Note that sinn ≤ 1 for all n ∈N so sinn/n ≤ 1/n, which implies we can consider the behaviour

of the sequence 1/n as it tends to infinity. Since the latter converges to 0, we infer that 0 is a

limit point of this subset; similar to the first set, we see that 0 is the only limit point.



MA3209 METRIC AND TOPOLOGICAL SPACES Page 20 of 65

Proposition 1.7. Let X be a topological space and A ⊆ X . Then, the following hold:

(i) x ∈ A if and only if for all open U ∋ x, we have U ∩A ̸= /0

(ii) If A′ is the set of limit points of A, then A = A∪A′

Proof. We first prove (i). Note that by contraposition, the statement is equivalent to x ̸∈ A if and only

if there exists open U ∋ x such that U ∩A = /0. The forward direction follows by setting U = X\A. As

for the reverse direction, we denote G = X\U . Then, G ⊆ X is closed and A ⊆ G, which shows that

A ⊆ G. As x ̸∈ G, then x ̸∈ A.

We then prove (ii). Recall that A⊆A. (i) of the proposition implies A′⊆A, so it follows that A∪A′⊆A.

We then need to show that A ⊆ A∪A′. Suppose x ∈ A and that x ̸∈ A′. This implies that there exists an

open U ∋ x such that U ∩ (A\{x}) = /0. By the contrapositive statement of (i), we have U ∩A = /0, so

x ∈ A.

Definition 1.20 (dense and nowhere dense sets). Let (X ,T ) be a topological space and A⊆X .

Then, we have the following:

(i) A is a dense set in X if A = X

(ii) A is a nowhere dense set if
(
A
)◦

= /0. Note that
(
A
)◦ refers to the union of all open sets of

X which are contained in A.

We note that a subset A of a topological space X is dense in X if for any point x ∈ X , any

neighbourhood of x contains at least one point from A, i.e. A has a non-empty intersection with every

non-empty open subset of X . In other words, A is dense in X if the only closed subset of X containing

A is X itself.

Example 1.36 (Q is dense in R). The set of rationals Q is dense in R with usual topology since in

this topology, every real number is a limit point of Q. Hence, Q= R.

Example 1.37. Every one-point set in R is nowhere dense.

Example 1.38 (R\Q is dense in R). The set of all irrational numbers, denoted by R\Q, is also

dense in R with the usual topology since R\Q= R.

Example 1.39. In the real line space R, define the set A to be

A = {x ∈Q : 0 < x < 1} ,

which is not nowhere dense in R because A = [0,1] so the interior of this set is the open interval (0,1).

As this set is non-empty, the result follows.

Example 1.40. The real number space R with the usual topology has the rational numbers Q as a

countable dense subset. This implies that the cardinality of a dense subset of a topological space may

be strictly smaller than the cardinality of the space itself.
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Example 1.41. Let

A =

{
1,

1
2
,
1
3
,
1
4
, . . .

}
⊆ R so A =

{
0,1,

1
2
,
1
3
,
1
4
, . . .

}
.

Note that A is nowhere dense in R since A has no interior point, so the interior of this set is /0.

Proposition 1.8. Let (X ,T ) be a topological space and A ⊆ X . Then, the following hold:

(i) If A is open in (X ,T ), then ∂A is nowhere dense in (X ,T )

(ii) If A is closed in (X ,T ), then ∂A is nowhere dense in (X ,T )

(iii) If A is closed in X , then A is nowhere dense if and only if X\A is everywhere dense.

The following proposition (Proposition 1.9) characterises nowhere dense subsets of a metric space

with the help of its open balls.

Proposition 1.9. Let (X ,d) be a metric space. We say that A ⊆ X is nowhere dense if and only

if the following equivalent conditions hold:

(i) A does not contain any non-empty open ball

(ii) every non-empty open set has a non-empty open ball disjoint from A

Definition 1.21 (convergence of a seuqence). Let

(x1,x2,x3, . . .) = {xi}∞

i=1 be a sequence of points in a topological space X .

We say that xi converges to x ∈ X if for any neighbourhood U ∋ x, there exists N > 0 such that

xk ∈U for all k > N. We write

xi → x and say that x is a limit of {xi}∞

i=1 .

Remark 1.4. Take note of the following:

(i) x is a limit point of {x1, . . .} does not imply that xi → x

(ii) xi → x does not imply that x is a limit point of {x1, . . .}

Example 1.42. Note that

{xn}∞

n=1 =

{
(−1)n +

1
n

}∞

n=1
in R

does not converge but its set of limit points is {−1,1}.

Example 1.43. Consider the constant sequence (1,1, . . .) which converges to 1 but the set equals

{1}, which does not have a limit point.

Proposition 1.10. Let (X ,d) be a metric space. Then, the following are equivalent:

(i) a sequence {xi}∞

i=1 converges to x in X
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(ii) for all ε > 0, there exists N > 0 such that d(xi,x)< ε for all i > N

Proof. Suppose (i) holds. By Definition 1.21, for any open neighbourhood U ∋ x, there exists N > 0

such that xk ∈ U for all k > N. Then, we can choose ε to be the radius of U and we are done. The

proof of the reverse direction is the same.

1.6. Continuity

Definition 1.22 (continuous map). Let

X and Y be topological spaces.

A map f : X → Y is continuous if for any open set U ⊆ Y , f−1(U)⊆ X is open.

Proposition 1.11. Let X and Y be topological spaces and f : X → Y . Then, the following are

equivalent:

(i) f is continuous

(ii) for all A ⊆ X , we have f
(
A
)
⊆ f (A)

(iii) for any closed set B ⊆ Y , f−1 (B)⊆ X is closed

(iv) for any x ∈ X and any open set V ⊆ Y containing f (x), there exists open x ∈U ⊆ X such

that f (U)⊆V

Proof. We first prove (i) implies (ii). Say we are given a continuous map f : X → Y . Then, for any

A ⊆ X , we have f (A) ⊆ Y is closed, so Y\ f (A) is open in Y . This implies f−1(Y\ f (A) ⊆ X is open

in X . As such, f (A)∩ (Y\ f (A)) = /0, which implies

A∩ f−1(Y\ f (A)) = /0.

Hence,

A∩ f−1(Y\ f (A)) = /0

f (A)∩ (Y\ f (A)) = /0

f (A)⊆ f (A)

and the proof is complete.

We then prove (ii) implies (iii). Let B ⊆ Y be a closed set. Then, because f−1(B) ⊆ X , replacing

A with f−1(B) in (ii) yields

f ( f−1(B))⊆ f ( f−1(B))⊆ B = B.

This yields f−1(B) ⊆ f−1(B). Since the reverse inclusion follows by the definition of closure, we

obtain equality, so it implies f−1(B)⊆ X .
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We then prove (iii) implies (iv). Let x ∈ X and V ⊆ Y be an open set containing f (x). By (iii), we

have f−1(Y\V ) ⊆ X is closed. Together with x /∈ f−1(Y\V ), we have U = X\( f−1(Y\V )) is open

and contains x. Moreover,

f (U) = f (X)\(Y\V )⊆ Y ⊆ (Y\V ) =V.

Lastly, we prove (iv) implies (i). Let W ⊆ Y be open. By (iv), for any x ∈ f−1(W ), there exists an

open set Ux ⊆ X containing x such that f (Ux)⊆W . Then, notice that

f−1(W )⊆
⋃

x∈ f−1(W )

Ux

and

f

 ⋃
x∈ f−1(W )

Ux

=
⋃

x∈ f−1(W )

f (Ux)⊆W which implies
⋃

x∈ f−1(W )

Ux ⊆ f−1(W ).

These yield the statement

f−1(W ) =
⋃

x∈ f−1(W )

Ux being open in X ,

which completes the proof that (iv) implies (i).

Example 1.44 (MA4262 AY24/25 Sem 1 Homework 1). Show that with the discrete metric on a

space X , the following properties hold:

(i) Every subset of X is open;

(ii) Every subset of X is closed;

(iii) Every subset of X has an empty boundary;

(iv) Every map f : X → X is continuous.

Solution. Recall that the discrete metric d(x,y) is defined as follows:

d(x,y) =

1 if x ̸= y;

0 if x = y

(i) Recall that a subset A ⊆ X is open in (X ,d) if and only if for all y ∈ A, there exists ε > 0 such

that the open ball {x ∈ X : d(x,y)< ε} ⊆ A. Note that for every ε ≤ 1, B(x,ε) = {x} because

d(x,y)< 1 if and only if y = x. Since {x} ⊆ A, it follows that A is open, so the first claim opens.

(ii) It suffices to show that for any A ⊆ X , its complement X\A is open. Since X\A ⊆ X and every

subset of X is open, the result follows.

(iii) Let A ⊆ X . Recall that the boundary of A is the set difference of its closure A and its interior A◦.

Since A is the smallest closed set containing A, then by (ii), A = A. Similarly, A◦ is the largest

open set contained in A, so by (i), it is equal to A. So, the boundary of A is A\A = /0.

(iv) It suffices to show that for every open set U ⊆ X (X here referring to the codomain), we have

f−1(U)⊆ X being open in X . This follows from (i) since every subset of X is open.
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Proposition 1.12 (pasting lemma). Let

X = A∪B ,where A,B ⊆ X are both closed (or both open).

Suppose f : A → Y and g : B → Y are continuous maps. If f (x) = g(x) for all x ∈ A∩B, then

h : X → Y defined by h(x) =

 f (x) if x ∈ A;

g(x) if x ∈ B
is continuous.

We will use this idea when studying homotopies and path homotopies in MA4266.

Proof. We will only prove for closed sets G ⊆ Y . Anyway, the proof works if we replace ‘closed’

with ‘open’.

Suppose G ⊆ Y is closed. Then, f−1(G) ⊆ A and g−1(B) are also closed. Since X = A∪B, we have

f−1(G),g−1(G) being closed in X . As such, their union is also closed in X , i.e.

h−1(G) = f−1(G)∪g−1(G) is closed in X .

The result follows.

Definition 1.23 (pullback topology). Let TY be a topology on Y and let f : X → Y be a map.

The pullback topology on X is defined to be

TX =
{

f−1(U) : U ∈ TY
}
.

This is the coarsest topology on X such that f is continuous.

Example 1.45. Let Y = R be equipped with its standard topology and X = Z. Define

f : Z→ R where f (n) = n.

For any open set U ⊆ R, the pullback topology on Z would make every set f−1(U) ⊆ Z open.

However, since the preimage of any open set in R under f is always a discrete set, Z would inherit

the discrete topology from R in this case.

Definition 1.24 (uniform continuity). Let

(X ,dX) and (Y,dY ) be two metric spaces.

A map f : X → Y is uniformly continuous on X if for any ε > 0, there exists δ > 0 such that if

dX(x,y)< δ , then dY ( f (x), f (y))< ε .

Example 1.46. Let (X ,d) be a metric space and A ⊆ X be non-empty. Then, the function f : X →R
defined by f (x) = d(x,A) is uniformly continuous.
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In fact, note that for any x,y ∈ X , we have

d(x,A) = inf
a∈A

d(x,a)≤ inf
a∈A

(d(x,y)+d(y,a)) = d(x,y)+d(y,A).

This implies that

|d(x,A)−d(y,A)| ≤ d(x,y).

By choosing δ = ε in Definition 1.24, we complete the checking process.

Proposition 1.13. Let (X ,dX) and (Y,dY ) be metric spaces. A map f : X → Y is uniformly

continuous if and only if for any two sequences {xi}∞

i=1 and {yi}∞

i=1 in X such that

lim
i→∞

dX(xi,yi) = 0, we have dY ( f (xi), f (yi)) = 0.

The proof of this result is trivial. One can apply the definition directly to prove the forward

direction; the reverse direction can be proven using contradiction, i.e. suppose on the contrary that

there exists ε > 0 such that for all i ∈ N, there exists xi,yi ∈ X such that

dX(xi,yi)<
1
i

but dY ( f (xi), f (yi))> ε,

which yields a contradiction.

One should recall the following from MA3210:

Definition 1.25 (pointwise convergence and uniform convergence). Let fi : X → Y be a

sequence of maps from a set X to a metric space (Y,d).

(i) fi converges pointwise to f : X → Y if fi(x)→ f (x) for all x ∈ X

(ii) fi converges uniformly to f : X → Y if for any ε > 0, there exists N > 0 such that for all

i ≥ N and x ∈ X , we have d( fi(x), f (x))< ε

1.7. Product of Topological Spaces

Definition 1.26 (product and projection map). Let {Xα}α∈Λ
be non-empty sets. Consider

the product

∏
α∈Λ

Xα = {(xα)α∈Λ : xα ∈ Xα for all α ∈ Λ}

For all α ∈ Λ, the map

πXα
: ∏

α∈Λ

Xα → Xα defined by (xα)α∈Λ 7→ xα is the projection to the α
th factor.



MA3209 METRIC AND TOPOLOGICAL SPACES Page 26 of 65

Note that if α0 ∈ Λ, then for any U ⊆ Xα0 , we have

π
−1
Xα0

(U) =

{
(xα)α∈Λ ∈ ∏

α∈Λ

Xα : xα0 ∈U

}
.

This is simply known as the inverse image of the projection map.

Moreover, if Xα = X for all α ∈ Λ, then the correspondence

∏
α∈Λ

Xα and the set of maps f : Λ → X defined by α 7→ xα

is defined by

(xα)α∈Λ 7→ ( f : α 7→ xα).

Definition 1.27 (product topology). Suppose (Xα ,Tα)α∈Λ are topological spaces. The

product topology on ∏α∈Λ Xα is the topology generated by the subbasis

S =
{

π
−1
Xα

(Uα) : α ∈ Λ,Uα ∈ Tα

}
.

Definition 1.28 (box topology). Suppose (Xα ,Tα)α∈Λ are topological spaces. The box

topology on (Xα ,Tα)α∈Λ is the topology generated by

B =

{
∏
α∈Λ

Uα ⊆ Xα is open

}
.

Remark 1.5. The product topology and box topology are the same for finite product but

different for infinite product.

Proposition 1.14. Let {Xα}α∈Λ
be topological spaces. For any α ∈ Λ, let

πXα
: ∏

α∈Λ

Xα → Xα be the projection onto the α
th factor.

Then, the following hold:

(i) the product topology on ∏α∈Λ Xα is the coarsest topology such that πXα
is continuous for

any α ∈ Λ

(ii) for any topological space Y and α ∈ Λ, let fα : Y → Xα . The map

f = ∏
α∈Λ

fα : Y → ∏
α∈Λ

Xα defined by y 7→ ( fα(y))α∈Λ

is continuous if and only if fα is continuous for every α ∈ Λ.

Proof. We first prove (i). Suppose α ∈ Λ and U ⊆ Xα be open. Then, π
−1
Xα

(U) lies in the subbasis that

generates the product topology and hence is open. So, for every α ∈ Λ, πXα
is a continuous map to
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the α th factor.

Note that a topology on

∏
α∈Λ

Xα contains S =
{

π
−1
Xα

(Uα) : α ∈ Λ,Uα ∈ Tα

}
is equivalent to it containing the basis

B =

{ ⋂
α∈Λ′

π
−1
Xα

(Uα) : Λ
′ ⊆ Λ is finite,Uα ⊆ Xα is open

}
.

By Remark 1.1, the product topology is the coarsest one that contains B, so it is the coarsest one that

contains S, and so it is the coarsest one for which πXα
is continuous for every α ∈ Λ.

We then prove (ii), starting with the forward direction. Note that fα = πXα
◦ f : Y → Xα as shown

in the following commutative diagram:

Y ∏α∈Λ Xα

Xα

f

fα πXα

By (i), πXα
is continuous. Since f is also continuous, we conclude that fα is continuous for every

α ∈ Λ (recall that the composition of composite maps is also continuous from MA1100/MA2108).

As for the reverse direction, pick any finite Λ′ ⊆ Λ. Then,

f−1

( ⋂
α∈Λ′

π
−1
Xα

(Uα)

)
=
⋂

α∈Λ′
(πXα

◦ f )−1 (Uα) =
⋂

α∈Λ′
f−1
α (Uα)

which is open since fα is continuous for every α ∈ Λ. This in particular shows that

f−1(B) is open for every B in the basis B.

We conclude that f is continuous.

Example 1.47 (component functions of f are continuous but f not continuous). Let RN be the

countable Cartesian product of R with itself, i.e. the set of all sequences in R. Equip R with the

standard topology and RN with the box topology. For the latter, say we have a basis element for the

box topology. Then, it comprises open sets of the form

U1 ×U2 ×U3 × . . . where Ui ⊆ R is open in R for all i.

Define

f : R→ RN via x 7→ (x,x,x, . . .).



MA3209 METRIC AND TOPOLOGICAL SPACES Page 28 of 65

All the component functions are the identity which is continuous. However, f is not a continuous

map. To see why, let

U =
∞

∏
n=1

(
−1

n
,
1
n

)
.

Suppose on the contrary that f is continuous. Since f (0) = (0,0,0, . . .) ∈ U , then there exists ε > 0

such that (−ε,ε)⊆ f−1(U). However, this implies that

f
(

ε

2

)
=
(

ε

2
,
ε

2
,
ε

2
, . . .
)
∈U.

This is false since ε/2 > 1/n for n sufficiently large, i.e. choose n such that n = ⌈2/ε⌉. So, f is not

continuous even though all its component functions are.

In Example 1.47, having said that, if we replace the example with f : R→ R2 via f (x) = (x,x),

then f is a continuous map since the intersection of two open sets in R is also an open set in R.

However, this property fails when the codomain is RN.

Corollary 1.1 (operations on continuous maps). Let X be a topological space and f ,g : X →R
be continuous. Then, f +g, f −g and f ·g are continuous. Also, if 0 ̸∈ g, then f/g is continuous.

Proof. This seems like a trivial result from MA2108 but now the domain is generalised to arbitrary

topological spaces. Firstly, define the map + : R×R→R as (a,b) 7→ a+b, which is continuous with

respect to the standard topology on R. Let F : X → R×R be defined by x 7→ ( f (x),g(x)). Then, F is

continuous by (ii) of Proposition 1.14. In particular, the following diagram commutes:

X R×R

R

R

F : x 7→ ( f (x),g(x))

f + : ( f (x),g(x)) 7→ f (x)+g(x)

g + : ( f (x),g(x)) 7→ f (x)+g(x)

As such, f +g =+◦F , so f +g is continuous. Using this method, the continuity properties involving

the other operations can be deduced similarly.

Example 1.48. Let n ∈ Z+ and decompose n = m1 + . . .+mk, where mi ∈ Z+ for every 1 ≤ i ≤
k. Prove that the product topology of standard topologies on Rm1 × . . .×Rmk = Rn is the standard

topology on Rn.

Solution. We first prove that the product topology is finer than the standard topology. Note that a basis

B for the standard topology on Rn is of the form Um1 × . . .×Umk , where each Umi is an open ball in
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Rmi . As such, each Umi is of the form (ami,bmi). Hence, B has elements of the form

(am1,bm1)× . . .× (amk ,bmk)

As mentioned, each (ami,bmi) is open in Rmi , so the product of these sets is open in the product

topology.

Then, we prove that the standard topology is finer than the product topology. Let B =Um1 × . . .×Umk

be an element of the basis B of the product topology, where each Umi is open in Rmi . As each Umi is

an open ball, then B can be written as the union of sets of the form (am1,bm1)× . . .× (amk ,bmk), each

being an open set in Rmi respectively. The result follows. □

Example 1.49 (MA3209 AY24/25 Sem 1 Homework 1). Let H = [0,1]N be the Hilbert cube, with

the product topology. Thus the sets of the form

B =
{
{xn}n∈N ∈ H : ∃N ∈ N and open intervals I j ⊆ [0,1], j ≤ N such that x j ∈ I j

}
constitute a basis of this topology.

(a) Show that

d(x,y) = ∑
n∈N

2−n|xn − yn| is a metric on H.

(b) Show that d induces the product topology.

Solution.

(a) We will only prove that d satisfies the triangle inequality. Suppose

d(x,y) = ∑
n∈N

2−n|xn − yn| and d(y,z) = ∑
n∈N

2−n |yn − zn| .

Then,

d(x,z) = ∑
n∈N

2−n|xn − zn|

= ∑
n∈N

2−n|(xn − yn)+(yn − zn)|

≤ ∑
n∈N

2−n|xn − yn|+ ∑
n∈N

2−n|yn − zn| by triangle inequality

= d(x,y)+d(y,z)

(b) We first prove that the topology induced by the metric is finer than the product topology.

Consider some element B in the product topology. Then, B takes the following form:

I1 × . . .× IN × [0,1]N\{1,...,N}

Here, each I j ⊆ [0,1] is an open interval. For any x ∈ B, we must have x j ∈ B for all 1 ≤ j ≤ N.

Since each I j is an open interval, then there exists ε j > 0 such that (x− ε j,x+ ε j)⊆ I j. Define

r = min
{

ε j

2 j : 1 ≤ j ≤ N
}
.
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Then, we claim that x∈Br(x)⊆B. The fact thatx is an element of the open ball Br(x) is obvious.

We shall prove that the subset inclusion holds. For any y ∈ Br(x), we have d(x,y)< r so

|xn − yn|
2n ≤ d (x,y)< r ≤ rn

2n which implies |xn − yn|< rn.

Hence, yn ∈ (−rn + xn,rn + xn), which asserts that the topology induced by the metric is finer

than the product topology.

We then prove that the product topology is finer than the topology induced by the metric. Note

that the topology on H induced by d is the topology generated by Bd , for which this basis

denotes the set of open balls Br(x), where x ∈ X and r > 0. Let Bε(x) ∈ Bd , where x ∈ H.

Suppose y ∈ Bε(x). Since Bε(x) is an open ball, then there exists r > 0 such that Br(y)⊆ Bε(x).

Choose N ∈ N such that 1/2N < r/2. Since every basis element B in the product topology

is of the form

I1 × . . .× IN × ∏
k>N

Ik for 1 ≤ k ≤ N,

then let

Ik = Br/2N (yk) and Ik = [0,1] for k > N.

Now, let w ∈ B, be any arbitrary element in the basis. Then, one can prove that d(w,y)< r. So,

we have y ∈ B ⊆ Br(y) ⊆ Bε(x), implying that the product topology is finer than the topology

induced by the metric.

1.8. Product of Metric Spaces

Definition 1.29 (Manhattan metric and Chebyshev metric). Suppose (X1,dX1), . . . ,(Xn,dXn)

are metric spaces. The following are two common metrics on X1 × . . .×Xn:

(i) Manhattan metric: d1((x1, . . . ,xn),(y1, . . . ,yn)) = dX1(x1,y1)+ . . .+dXn(xn,yn)

(ii) Chebyshev metric: d∞((x1, . . . ,xn),(y1, . . . ,yn)) = max{dXi(xi,yi) : 1 ≤ i ≤ n}

Note that the Manhattan metric d1 is also known as the product metric or taxicab metric and it is

defined as the sum of the individual distances across each coordinate; the Chebyshev metric d∞ is also

known as the maximum metric or the supremum metric and it takes the maximum of the individual

distances between corresponding points across the coordinates.

Moreover, in Definition 1.29, if Xi = R and di is the Euclidean metric for all 1 ≤ i ≤ n, then d1

and d∞ are known as the L1-metric and L∞-metric respectively.

As for the infinite product case, there is no natural metric on an uncountable product of metric spaces.
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Thus, we stick to countable products. As an example, if we let (Xi,dXi)
∞
i=1 be metric spaces, given the

metric d∞ as mentioned, we can define

d∞ :
∞

∏
i=1

Xi ×
∞

∏
i=1

Xi → R by d∞(x,y) = sup
{

dXi(xi,yi) : i ∈ Z+
}
.

However, this is not well-defined as dXi(xi,yi) might be unbounded as i → ∞.

Example 1.50 (infinite supremum for infinite product of metric spaces). Let (Xi,dXi) be metric

spaces. For each i ∈ Z+, let Xi = R be the real number line equipped with the standard Euclidean

metric dXi(xi,yi) = |xi − yi|. Consider the sequences x = {xi}∞

i=1 and y = {yi}∞

i=1 in the product space

R×R× . . ., which is an infinite product. Here, xi = i and yi = 0 for all i ∈ Z+.

For every i∈Z+, the distance between the components of x and y is dXi(xi,yi) = |xi − yi|= i. However,

d∞(x,y) is the supremum of dXi(xi,yi) over all i ∈ Z+, which is infinity. However, this means that d∞

is not well-defined.

Definition 1.30 (open ball). Let (X ,d) be a metric space. For any x ∈ X , define

Bd
r (x) to be the open ball of radius r centred at x in the metric space (X ,d).

So,

Bd
r (x) = {y ∈ X : d(x,y)< r}

includes all points y ∈ X such that the distance between x and y (as measured by the metric d)

is strictly less than r.

Proposition 1.15 (bounded metric). Let (X ,d) be a metric space. Then

ρ : X ×X → R given by ρ(x,y) =
d(x,y)

1+d(x,y)

is a metric with diameter less than 1. Furthermore, ρ and d induce the same topology on X .

Proof. First, we verify that ρ is a metric. Note that the non-negativity, positive definiteness and

symmetry properties are obvious so we will only prove the triangle inequality. Let f : R≥0 → R
be given by f (t) = t/(1+ t). In fact, the codomain R can be restricted to R≥0 but this is permitted

once we verified that ρ is a metric.

One can easily show that f is increasing, concave down and f (0) = 0, so for any a,b ≥ 0, we have
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f (a+b)≤ f (a)+ f (b). Hence,

ρ(x,z) = f (d(x,z)) by definition of ρ

≤ f (d(x,y)+d(y,z)) since d satisfies the triangle inequality

= f (d(x,y))+ f (d(y,z)) since f (a+b)≤ f (a)+ f (b)

= ρ(x,y)+ρ(y,z)

so ρ satisfies the triangle inequality. Moreover, ρ(x,y) < 1 for all x,y ∈ X . So, we conclude that the

diameter of ρ is less than 1. In other words, the largest distance between any two x,y∈X is less than 1.

In order to prove that d and ρ induce the same topology on X , we will make use of the following

result: if x,y ∈ X such that d(x,y)< 1, then

ρ(x,y)< d(x,y)< 2ρ(x,y).

In particular, for every x ∈ X and 0 < r < 1, we have

Bρ

r/2(x)⊂ Bd
r (x)⊂ Bρ

r (x)

The proof of this result is obvious. Now, let T and T ′ be the topologies induced by d and ρ

respectively. Just as before, it suffices to show that T is finer than T ′ and T ′ is finer than T . Note that

for any x ∈ X , if x ∈ Bd
r (y), then there exists δ ∈ (0,1) such that

x ∈ Bd
δ
(x)⊆ Bd

r (y) so x ∈ Bρ

δ/2(x)⊆ Bd
r (y).

The second statement follows by the claim that was established earlier. In particular, we replace r

with δ . This shows that T is finer than T ′. By a symmetric argument, one can show that T ′ is finer

than T .

Proposition 1.16. Let (Xi,dXi)
∞
i=1 be metric spaces for all i and let

ρXi(x,y) =
dXi(x,y)

1+dXi(x,y)
for all x,y ∈ Xi.

Then,

d :
∞

∏
i=1

Xi ×
∞

∏
i=1

Xi → R given by d(x,y) = sup
{

1
i
·ρXi(xi,yi) : i ∈ Z

}
is a metric that induces the product topology on ∏

∞
i=1 Xi.
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Proof. We will only prove that d is a metric. Again, the non-negativity, positive definiteness, and

symmetry are obvious, so we will only prove that d satisfies the triangle inequality. We have

d(x,y)+d(y,z) = sup
{

1
i
ρXi(xi,yi) : i ∈ Z+

}
+ sup

{
1
i
ρXi(yi,zi) : i ∈ Z+

}
=≥ sup

{
1
i
· (ρXi(xi,yi)+ρXi(yi,zi)) : i ∈ Z+

}
since sup(A+B) = supA+ supB

≥ sup
{

1
i
·ρXi(xi,zi) : i ∈ Z+

}
= d(x,z)

which shows that d is a metric.

1.9. Quotient of Topological Spaces

Definition 1.31 (quotient map). Let X and Y be topological spaces. A surjective map p : X →
Y is a quotient map if

V ⊆ Y is open if and only if p−1(V )⊆ X is open.

[open and closed maps] Let X and Y be topological spaces. A continuous map

f : X → Y is open if f (U) is open for any open U ⊆ X .

We obtain the definition of a closed map by replacing all ‘open’ with ‘closed’.

Proposition 1.17. If

f : X → Y and g : Y → Z are both quotient maps,

then g ◦ f : X → Z is also a quotient map. Note that ‘quotient’ can be replaced with ‘open’ or

‘closed’ and the proposition would still hold.

Example 1.51 (map that is closed but not open). Let p : [0,1]∪ [2,3]→ [0,2] be a map defined by

p(x) =

x if x ∈ [0,1];

x−1 if x ∈ [2,3].

By the pasting lemma (Proposition 1.12), p is a continuous map. To see why, [0,1]∪ [2,3] is the union

of two closed intervals [0,1] and [2,3]. On the interval [0,1], the map p(x) = x is continuous; on the

interval [2,3], the map p(x) = x−1 is also continuous. As the intersection of these two intervals is /0,

there is no conflicting definition at any point.

Moreover, p is a closed map. To see why, let C ⊆ [0,1]∪ [2,3] and we have to show that p(C) is

also closed in [0,2]. There are three cases to consider — firstly, if C ⊆ [0,1], secondly, if C ⊆ [2,3]

and thirdly, if C is a closed set that intersects [0,1] and [2,3]. Arguing that p is a closed map for the
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first two cases is trivial. As for the third case, we have

p(C) = p(C∩ [0,1])∪ p(C∩ [2,3]).

Note that C∩ [0,1] and C∩ [2,3] are closed since the intersection of two closed sets is also closed. So,

p(C∩ [0,1]) and p(C∩ [2,3]) are closed sets. Hence, p(C) is closed in [0,2].

As p is continuous, surjective and closed, we conclude that p is a quotient map.

Having said that, p is not an open map. To see why, let B = (0,1], so B is open with respect to the

subspace topology in [0,1]∪ [2,3]. However, p((0,1]) = (0,1]⊆ [0,2] which is not open. To see why,

in the standard topology on [0,2], open sets are typically intervals that do not include their endpoints.

Example 1.52 (map that is open but not closed). A classic example of a map that is open but not

closed is the projection map

π : R2 → R where π(x,y) = x.

Here, R2 is equipped with the standard topology. To see why the claim is true, we first show that π is

an open map. Note that π sends open sets in R2 to open sets in R. For example, consider an open set

U = (a,b)× (c,d)⊆ R2. Under π , its image is the open interval (a,b), which is open in R. Think of

this as projecting the base of a rectangle in R2 onto a segment of the x-axis.

However, π is not a closed map. To see why, consider the closed set

C =

{(
1
x
,x
)

: x > 0
}
⊆ R2.

C contains no limit points so by vacuous truth, F ⊆ R2 is a closed set. The image of C under π is the

set {
x :

1
x
> 0
}
= (0,∞)

which is not closed in R as it does not contain its limit point 0.

Example 1.53 (surjective and continuous map that is neither open nor closed). Let

X = R2\{(x,y) : 0 ≤ x < 1,0 < y < 1} and f : X → R be defined as f (x,y) = x.

Note that f is surjective and continuous. It is clear that f is continuous that it is the restriction of the

projection of R2 onto its first factor which is continuous.

However, f is not open. To see why,

f
(

B1/3

((
1,

1
2

))
∩X
)
=

[
1,

4
3

)
⊆ R is not open.
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Also, f is not closed. To see why,

f

(
B1/3

((
0,

1
2

))
∩X

)
=

[
−1

3
,0
)
⊆ R is not closed.

Having said that, f is a quotient map. To see why, let A ⊆ R and suppose f−1(A)⊆ X is open. Then,

f−1(A)∩ (R× (5,6))⊆ R× (5,6) is open

since this is the intersection of open sets. Moreover,

f−1(A)∩ (R× (5,6)) = A× (5,6).

Moreover, the set

{U ×V : U ⊆ R is open,V ⊆ (5,6) is open} is a basis for R× (5,6).

Let x ∈ A, then A× (5,6)⊆ R× (5,6) implies that there exists U ⊆ R and V ⊆ (5,6) both open such

that (x,11/2) ∈U ×V ⊆ A× (5,6), which shows that x ∈U ⊆ A, so A is open.

Let X and Y be topological spaces. It is of interest to discuss the following question:

how different are quotient maps from open maps or closed maps?

A continuous surjection q : X → Y is a quotient map if a subset U ⊆ Y is open in Y if and only if its

preimage q−1(U) is open in X . This property ensures that Y is endowed with the quotient topology

induced by q. On the other hand, open maps (maps f which send every open set in X to an open

set in Y ) need not be surjections or continuous, although they are generally continuous maps. The

definition of a closed map is similar to that of an open map — they are not required to be surjections

or continuous.

Definition 1.32 (saturated set). Let

f : X → Y be a surjective continuous map and A ⊆ X .

The set A is saturated with respect to f if

A = f−1(S) for some S ⊆ Y.

Note that Definition 1.32 is equivalent to saying that A = f−1( f (A)).

Proposition 1.18. Let f : X → Y be a surjective continuous map. Then, the following hold:

(i) f is a quotient map if and only if f sends every saturated open set to an open set. The

same property holds if we replace ‘open’ with ‘closed’.
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(ii) If f is a quotient map and A ⊆ X is saturated and open, then the restriction map

f |A : A → f (A) is also a quotient map.

Similar to (i), if we replace ‘open’ with ‘closed’, the property still holds.

Proof. We first prove (i). We prove the forward direction. Suppose A ⊆ X is open and saturated.

Earlier, we mentioned that an equivalent way of stating Definition 1.32 is that A = f−1( f (A)), so

f (A)⊆ Y is open as a quotient map. Since

A is saturated and open and f (A) is open,

the result follows.

We then prove the reverse direction of (i). Let U ⊆ Y and suppose f−1(U) is open. Since f−1(U)

is saturated, then f ( f−1(U))⊆ X is open. Since f is surjective and U = f ( f−1(U)), it follows that f

is a quotient map.

Now, we prove (ii). By the preamble,

f |A : A → f (A) is surjective and continuous.

Let B ⊆ A be open and saturated with respect to f |A. By (i), it suffices to prove that f |A(B)⊆ f (A) is

open. Note that

B = ( f |A)−1( f |A(B)) = f−1( f (B)) as A is saturated with respect to f .

Since B ⊆ A and A ⊆ X is open, then B ⊆ X is open. By (i), we know that f (B) is open and thus,

f |A(B) = f (B) is also open in Y . The result follows.

Proposition 1.19. If X is a topological space, A ⊆ X and p : X → A is surjective. Then, there

exists a unique topology on A (called the quotient topology) such that p is a quotient map.

Proof. Let

T =
{

U ⊆ A : p−1(U)⊆ X is open
}
.

Then, /0,A ∈ T . Suppose {Uα}α∈Λ
⊆ T . Then,

p−1

(⋃
α∈Λ

Uα

)
=
⋃

α∈Λ

p−1 (Uα)⊆ X is open

which shows that the arbitrary union is contained in T .
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Next, suppose U1, . . . ,Un ∈ T . Then,

p−1

(⋂
α∈Λ

Uα

)
=
⋂

α∈Λ

p−1(Uα)⊆ X is open

which shows that the finite intersection is contained in T .

These show that T is a topology. We then show that the topology is unique. By definition, p : X →
(A,T ) is a quotient map. Suppose T ′ is another topology on A such that p : X → (A,T ′) is a quotient

map. So,

U ∈ T ′ if and only if p−1(U)⊆ X is open if and only if U ∈ T .

This shows that T = T ′.

Example 1.54. Let p : R→{a,b,c} be a map defined as

x 7→


a if x > 0;

b if x = 0;

c if x < 0.

Then, the quotient topology on {a,b,c} is

T = {{a} ,{c} ,{a,c} ,{a,b,c} , /0} .

Definition 1.33 (quotient space). Let X be a topological space and let X∗ be the cells of a

partition of X . Let p : X → X∗ be the surjective map that sends each point in X to the subset that

contains it. X ′ equipped with the quotient topology induced by p is a quotient space of X .

Example 1.55 (partitioning R). Partition

X = R= R−∪{0}∪R+.

Then, X∗ = {R−,{0} ,R+}. To see why, recall that X∗ represents the set of equivalence classes of X

under an equivalence relation induced by the given partition. When we partition a set X into disjoint

subsets, we are effectively defining an equivalence relation where elements are considered equivalent

if they belong to the same subset of the partition.

The partition induces an equivalence relation ∼ on X where two elements x,y ∈ X are equivalent

if they belong to the same subset of the partition. The equivalence classes under this relation are

precisely the subsets in our partition, i.e.

[x] =


R− if x is negative;

{0} if x = 0;

R+ if x is positive.
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Example 1.56 (partitioning D). Let X = D be the closed unit disc, i.e.

X =
{
(x,y) : x2 + y2 ≤ 1

}
.

We can decompose it as the following union:{
(x,y) : x2 + y2 = 1

}
∪

⋃
(x,y):x2+y2<1

{(x,y)}

Then,

X∗ =
{
{(x,y)} : x2 + y2 < 1

}
∪
{{

(x,y) : x2 + y2 = 1
}}

.

Example 1.57. Let X = R and define a surjective map

p : X → X∗ where p : x 7→ x+n for some n ∈ Z such that x+n ∈ [0,1).

Then, such n is unique for a fixed x ∈ R. In this setting, X∗ = [0,1). In fact, the process of adding an

integer n to x to bring it into [0,1) is equivalent to considering real numbers modulo 1. We define an

equivalence relation ∼ on R where

x ∼ y if and only if x− y ∈ Z.

Hence, the equivalence class of x is [x] = {y ∈ R : y ∼ x}= x+Z. We may also identify X∗ as the unit

circle S1 or R/Z.



MA3209 METRIC AND TOPOLOGICAL SPACES Page 39 of 65

2. Topological and Metric Properties of Spaces

2.1. T1 and T2 Spaces

Definition 2.1 (T1 space). Let X be a topological space. We say that X is T1 or Fréchet if

for any distinct x,y ∈ X , there exists an open set U ⊆ X such that x ∈U but y /∈U.

Definition 2.2 (T2 space). Let X be a topological space. We say that X is T2 or Hausdorff if

for any distinct x,y ∈ X , there exist open neighbourhoods U and V of x,y respectively

such that U ∩V = /0

Remark 2.1. Any T2 space is also T1.

Example 2.1 (metric spaces are Hausdorff). Any metric space is Hausdorff. To see why, for any

x,y ∈ X , let a = dX(x,y). Define the open neighbourhoods Ux and Vy as follows:

Ux = Ba/3(x) and Vy = Ba/3(y) so Ux ∩Vy = /0.

As mentioned, Ux and Vy are two disjoint open neighbourhoods that contain x and y respectively.

Example 2.2 (trivial topology). Let X be a topological space such that |X | ≥ 2. Then, the trivial

topology is not T1. To see why, consider a topological space X with at least two distinct points, say x

and y. In the trivial topology, the only open sets are /0 and X , so

the only non-empty open set is X itself.

So, regardless of which points we pick, the only open set containing x is X , which must also contain

y, and vice versa. As such, there are no open sets that can separate distinct points x and y in the sense

required by the T1 property.

Example 2.3 (discrete topology is Hausdorff). The discrete topology is Hausdorff. To see why,

consider any two distinct points x,y ∈ X . Recall that in the discrete topology, every subset of X is

open, so the singleton sets {x} and {y} are open. As these singleton sets form neighbourhoods around

x and y neighbourhoods, it follows that the neighbourhoods are disjoint.

Example 2.4 (co-finite topology). The co-finite topology is T1; it is Hausdorff if and only if X is

finite.

We first deduce the first claim. Suppose X is a topological space equipped with the co-finite topology.

If x,y ∈ X are distinct, then X\{x} is open and thus contains y but not x. This shows that X is T1.

Now, if X is finite, then the co-finite topology on X is discrete and hence Hausdorff. To see why,
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recall that the co-finite topology allows all sets with finite complements to be open, so every subset of

X is open. This is precisely the definition of the discrete topology, where every subset of X is an open

set.

On the other hand, suppose X is infinite. We shall prove that X is not Hausdorff. Suppose U,V ⊆ X

are open. Then, there exist

x1, . . . ,xn,y1, . . . ,yn ∈ X such that U = X\{x1, . . . ,xn} and V = X\{y1, . . . ,yn} .

Note that

X\U = {x1, . . . ,xn} and X\V = {y1, . . . ,yn} are finite sets.

Since X is infinite, then there exists

z ∈ X\{x1, . . . ,xn,y1, . . . ,yn} which implies z ∈U ∩V.

Hence, X is not Hausdorff since U ∩V ̸= /0.

Proposition 2.1 (product of Hausdorff spaces). If

X and Y are Hausdorff spaces, then X ×Y is also Hausdorff.

Proof. Let X and Y be Hausdorff spaces. Recall that X is Hausdorff if for any distinct points x,y ∈ X ,

we can construct open balls U and V around x and y respectively such that y ̸∈U and x ̸∈V .

X

x

U

y

V

Similarly, let Y be a Hausdorff space. Then, for any distinct points x′,y′ ∈ Y , we can construct open

balls U ′ and V ′ around x′ and y′ respectively such that y ̸∈U ′ and x ̸∈V ′.

Now, consider the product of these two Hausdorff spaces, denoted by X ×Y . Let (x,x′) ,(y,y′)∈ X ×Y

be distinct points. Let U ′′ and V ′′ be open balls around (x,x′) and (y,y′) respectively. Suppose

rU ′′ = min{rU ,rU ′} and rV ′′ = min{rV ,rV ′}
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which denote the radii of U ′′ and V ′′ respectively. Then, by symmetry, it suffices to show that (y,y′)

is not contained in the open ball U ′′ containing (x,x′). This is equivalent to√
(x− y)2 +(x′− y′)2 > min{rU ,rU ′} so (x− y)2 +

(
x′− y′

)2
> r2

U and r2
U ′.

Recall that |x− y|> rU and |x′− y′|> rU ′ , so the result follows.

Proposition 2.2 (subspace of Hausdorff space). For any

Hausdorff space X , any subspace of X is also Hausdorff.

Proof. Let X be a Hausdorff space. Then, for all distinct points x,y ∈ X , we can construct two open

balls U and V centred at x and y respectively such that x ̸∈ V and y ̸∈U . Suppose Y is a subspace of

X . Then, consider two points x′,y′ ∈ Y . Consider the sets

U ′ = Y ∩U and V ′ = Y ∩V which are open in the subspace topology on Y.

X

Y

x

U

y

V

x′

U ′ = Y ∩U

y′

V ′ = Y ∩V

So,

U ′∩V ′ =U ∩V ∩Y ⊆U ∩V = /0.

So, there exists an open set U ′ ⊆ Y such that if x′ ∈ U ′, then x′ /∈ V ′. The same symmetric argument

holds for y′, i.e. there exists an open set V ′ ⊆ Y such that if y′ ∈V ′, then y′ /∈U ′. We conclude that Y

is also Hausdorff.

Proposition 2.3. Suppose X is an infinite set. Then,

the cofinite topology on X is not metrizable.

Example 2.5. In relation to Proposition 2.3, we give an example of a finite set X equipped with the

co-finite topology such that X is metrizable.
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Let X = a,b,c} be a finite set with three elements. Then, X is metrizable, i.e. we can define a discrete

metric d : X ×X →R, which is a simple way to metrize the space. The discrete metric on X would be

d(a,b) = 1 d(a,c) = 1 d(b,c) = 1 d(x,x) = 0 for all x ∈ X .

This metric induces the discrete topology on X , which coincides with the co-finite topology because

X is a finite set.

Proposition 2.4. X is a T1 topological space if and only if for all x ∈ X , {x} is closed.

Proof. We first prove the forward direction. It suffices to prove that X\{x} is open in X . Let x ∈ X

and for all y ∈ X\{x}, there exists an open set Vy ⊆ X such that y ∈Vy and x ̸∈Vy. Hence,

X\{x}=
⋃
y∈Y

Vy which is the union of open sets which is open.

Now, we prove the reverse direction. Let x,y ∈ X be distinct. Then,

U = X\{x} ⊆ X is open with x ̸∈U and y ∈U.

Hence, X is T1.

As mentioned in Example 2.1, metric spaces are Hausdorff, so by Remark 2.1, every metric space

is also in T1. As such, we have the following corollary, which appears to be obvious.

Corollary 2.1. Finite sets in metric spaces are closed.

2.2. First Countable Spaces

Definition 2.3 (countable basis). Let X be a topological space. For all x ∈ X , a countable

basis of X at x is

a countable collection B of open sets in X that contain x such that

every open set in X that contains x also contains some B ∈ B.

Definition 2.4 (first countable space). A topological space X is said to be first countable if

there exists a countable basis of X at x for every x ∈ X .

Example 2.6 (metric spaces are first countable). Metric spaces are first countable. To see why, let

x ∈ X be arbitrary. Then, consider the following set B of open balls:

B =
{

B1/i(x) : i ∈ Z+
}

which is a countable basis of X at x

To see why this holds, note that the sequence 1/i converges to 0 as i → ∞, so there exists i ∈ Z+ such

that 1/i < ε , implying that B1/i(x)⊆ Bε(x)⊆U , where U is any open set containing x.
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Example 2.7 (co-finite topology on uncountable set is not first countable). The co-finite topology

on an uncountable set X is not first countable. For example, take X = R.

To see why, pick x ∈ X and suppose on the contrary that

there exists a countable basis B = {B1, . . . ,} at x.

Then, Bi = X\Fi for some finite Fi ⊆ X . Since X is uncountable, then

there exists y ∈ X\

(
{x}∪

⋃ ∞⋃
i=1

Fi

)
and let U = X\{y} .

Note that x ∈U , however for all i, we have y ∈ Bi but y ̸∈U , so Bi is not a subset of U for every i. We

have arrived at a contradiction so we conclude that B is uncountable.

Proposition 2.5. Let X be a topological space.

(i) Let A ⊆ X . If there exists a sequence {xi}∞

i=1 such that xi → x as i → ∞, then x ∈ A. The

converse is true if X is first countable.

(ii) Let f : X → Y . If f is continuous, then for any sequence {xi}∞

i=1 ⊆ X such that xi → x as

n → ∞, we have f (xi)→ f (x) as i → ∞. The converse holds if X is first countable.

Proof. We first prove (i). We start with the forward direction. Let {xi}i=1 be a sequence such that

xi → x as i → ∞. Recall that A is the union of A and the set of limit points of A. As such, it suffices to

prove that if x ̸∈ A, then xi ̸= x for every i.

Given that xi → x, then for all open U ⊆ X such that x ∈ U , there exists NU > 0 such that xi ∈ U

for all i ≥ NU . So, there exists xNU ∈ {xi}∞

i=1 such that xNU ∈U ∩ (A\{x}). Hence, x is a limit point of

A.

We now prove the reverse direction. Suppose x ∈ A. Let B = {B1, . . .} be a countable basis of X

at x. Without loss of generality, we may assume that Bi ⊇ Bi+1 for all i ∈ Z+. For any i, choose

xi ∈
i⋂

j=1

B j = A = Bi ∩A.

Hence, for any open U ⊆ X that contains x, there exists N ∈ Z+ such that BN ⊆U . So, for all i ≥ N,

we have xi ∈ BN ⊆U , implying xi → x.

As for (ii), we first prove the forward direction. Let U ⊆ Y be an open set such that f (x) ∈U . Then,

f−1(U)⊆ X is open and x ∈ f−1(U). If xi → x, then there exists N > 0 such that xi ∈ f−1(U) for all

i ≥ N. Hence, f (xi) ∈U for all i ≥ N. Since U was an arbitrary open set, the result follows. We omit

the proof of the reverse direction.
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2.3. Compactness

Definition 2.5 (open cover). Let X be a topological space. An open cover of X is a collection

of open sets {Uα}α∈Λ
in X such that

⋃
α∈Λ

Uα = X .

Definition 2.6. A topological space X is

compact if every open cover of X admits a finite subcover.

Example 2.8. We have

X =

{
1
n

: n ∈ Z+

}
⊆ R not being compact

since the set of positive real numbers of the form 1/n forms an open cover of X with respect to the

subspace topology but it does not have a finite subcover.

Example 2.9 (Rudin PMA p. 44 Question 10). Let S be the set consisting of 0 and all real numbers

of the form 1/n, where n ∈ N. Prove that S is compact.

Solution. Suppose on the contrary that S is not compact. That is, there exists an open cover U of S

which does not contain a finite subcover. Consider partitioning the interval [0,1] into the following

two sets, A1 and B1:

A1 =

{
s ∈ S : s ∈

[
0,

1
2

]}
and B1 =

{
s ∈ S : s ∈

[
1
2
,1
]}

Note that B1 is finite since it contains the elements 1/2 and 1. Hence, B1 has a finite subcover.

However, A1 does not have a finite subcover because A1 ∪B1 = S, so it is not compact.

Now, consider the partition

A2 =

{
s ∈ S : s ∈

[
0,

1
4

]}
and B2 =

{
s ∈ S | s ∈

[
1
4
,
1
2

]}
.

In a similar fashion, B2 is compact but A2 is not compact. Define An and Bn for general n ∈ N as

follows:

An =

{
s ∈ S : s ∈

[
0,

1
2n

]}
and Bn =

{
s ∈ S : s ∈

[
1
2n ,

1
2n−1

]}
Observe that A1 ⊇ A2 ⊇ A3 ⊇ . . . and all the Bn’s are compact sets. As mentioned, as we cannot obtain

finite subcover for A1 and A2, in general, we cannot obtain finite subcover for An for n ∈ N. Suppose

1/r ∈ An. Then, 1/r ≤ 1/2n, so r ≥ 2n. Also, as U is open, then for all x ∈R, there exists R ∈R+ such

that (x−R,x+R)⊆ U .
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Let 1/r ∈ An, so for sufficiently large n,(
1
2n −R,

1
2n +R

)
∈ U .

Now, note that [
0,

1
2n

]
⊆
(

1
2n −R,

1
2n +R

)
⊆ U ,

where the interval on the left comprises all s in An. As such, An ⊆ U . This is a contradiction since An

has a finite subcover. □

Example 2.10. Any metric space X of infinite diameter is not compact. Let x ∈ X . Then,

{Bn(x) : n ∈ Z+} forms an open cover of X which does not have a finite subcover.

Example 2.11 (MA3209 AY24/25 Sem 1 Homework 4). Suppose X and Y are topological spaces.

Let f : X → Y be a continuous map. Prove that

if X is compact, then f (X) is compact.

Solution. Suppose X is compact and let {Vα} be an open cover of f (X) in Y . We wish to prove that

f (X) has a finite subcover. Since f is continuous, the preimages of open sets in Y are open in X .

Hence, for each open set Vα in the open cover of f (X), the preimage f−1(Vα) is open in X .

We see that the collection { f−1(Vα)} forms an open cover of X because

X = f−1( f (X)) =⊆α∈Λ f−1(Vα).

Since X is compact, there exists a finite subcover that covers X , i.e.

X =
n⋃

i=1

f−1(Vαi).

Applying f to both sides, we have

f (X) = f

(
n⋃

i=1

f−1 (Vαi)

)
⊆

n⋃
i=1

f
(

f−1 (Vαi)
)
⊆

n⋃
i=1

Vαi

which shows that f (X) has a finite subcover. □

Remark 2.2. Let X be a topological space. Y ⊆ X is a compact subspace if and only if every

collection U of open sets in Y such that

Y ⊆
⋃

U∈U
U admits a finite subcollection U ′ ⊆ U

such that

Y ⊆
⋃

U∈U ′
U.
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Proposition 2.6. Every closed subspace of a compact space is compact.

Proof. Let X be a compact space and Y ⊆ X is closed. Let {Uα}α∈Λ
be a cover of Y by open sets in

X . Notice that

{Uα}α∈Λ
∪{X\Y} is an open cover of X .

Also, the compactness of X guarantees that there exists a finite subcover

U ′′ ⊆ {Uα}α∈Λ
∪{X\Y} of X .

If U ′⊆{Uα}α∈Λ
, then this is a finite subcover of Y . On the other hand, if X\Y ∈U ′, then U ′\{X\Y}⊆

{Uα}α∈Λ
is a finite subcover of Y .

Proposition 2.7. Every compact subspace of a Hausdorff space is closed.

Proposition 2.8 (tube lemma). Let X be a topological space and Y is a compact topological

space. If N ⊆ X ×Y is an open set that contains {(x0,y) : y ∈ Y} (i.e. the tube around the point

x0 ∈ X), then N contains W ×Y for some open W ⊆ X that contains x0.

Example 2.12. Let

S =

{
(x,y) ∈ R2 : |x| ≤ 1

y2 +1

}
⊆ R2

which contains {0}×R, but it does not contain a tube. To see why, there does not exist any open

set (−ε,ε)×R, where ε > 0, which is contained in S. This fact is easy to establish because for y

sufficiently large enough, we have 1/(y2 + 1) < ε , so the width of the strip around x = 0 becomes

very narrow, to the extent that it is narrower than (−ε,ε).

Corollary 2.2. If X and Y are compact topological spaces, then X ×Y is compact.

We will see a generalisation of Corollary 2.2 in Theorem 4.2, known as Tychonoff’s theorem.

Assuming the axiom of choice, it states that the arbitrary product of compact spaces is also compact.

Definition 2.7 (finite intersection property). A collection G of subsets of X has finite

intersection property if

every finite subcollection {G1, . . . ,Gn} ⊆ G satisfies
n⋂

i=1

Gi ̸= /0.

Proposition 2.9. Saying that a topological space X is compact is equivalent to X having the

following property: for a collection G of closed sets in X , if G has the finite intersection property,
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then

⋂
G∈G

G ̸= /0.

Proof. Let G be a collection of closed sets in X . Define U to be the following set:

U = {X\G : G ∈ G}

Then, the following statements are equivalent:

(i) If

G has the finite intersection property, then
⋂

G∈G
G ̸= /0

(ii) If

⋂
G∈G

G = /0, then there exist G1, . . . ,Gn ∈ G such that
n⋂

i=1

Gi = /0

(iii) If

⋃
U∈U

U = X , then there exist U1, . . . ,Un ∈ U such that
n⋃

i=1

Ui = X

Corollary 2.3. If X is compact and {Gi}∞

i=1 is a nested sequence of closed subsets of X (i.e.

Gi ⊇ Gi+1 for all i ∈ Z+), then

∞⋂
i=1

Gi ̸= /0.

Definition 2.8 (isolated point). A point x in a topological space X is isolated if {x} is open

in X .

Theorem 2.1. Let X be a non-empty, compact, Hausdorff space. If X has no isolated points,

then X is uncountable.

Lemma 2.1. Let X be a Hausdorff space. If U ⊆ X is non-empty and open and x ∈ X is not an

isolated point, then there exists an open, non-empty V ⊆U such that x ̸∈V .
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2.4. Limit Points and Sequential Compactness

Definition 2.9 (limit point compactness). A topological space X is limit point compact if

every infinite subset of X has a limit point in X .

Example 2.13 (unbounded metric space is not limit point compact). Any unbounded metric space

(X ,d) is not limit point compact. For example, the Euclidean space Rn is unbounded. Say we equip

Rn with the standard distance metric d(x,y) = ∥x−y∥. Then, d is unbounded because for any two

points x and y, the distance can get arbitrarily large.

Pick a point x1 ∈ X . For all i ∈ Z+, let xi be any point satisfying Bi(x1)\Bi−1(x1). We will show

that the infinite set S = {x1,x2, . . .} ⊆ X does not have any limit points.

We claim that if j ̸= i, i−1, i+1, then d(x j,xi)> 1. Suppose on the contrary that

there exists j ̸= i, i−1, i+1 such that d(x j,xi)≤ 1.

If j > i+1, then

d(x j,x1)≤ d(x j,xi)+d(xi,x1) by triangle inequality

≤ 1+ i

To see why the second inequality holds, we have d(x j,xi) ≤ 1 by assumption and d(xi,x1) = i

since xi ∈ Bi(x1)\Bi−1(x1) so xi is of distance at most i from x1. This is a contradiction since

x j ̸∈ B j−1(x1)⊇ Bi+1(x1).

Similarly, if j < i − 1, then one is able to deduce that d(xi,x1) ≤ 1 + j, which is a contradiction

since xi ̸∈ Bi−1(x1)⊇ B j+1(x1).

Choose any y ∈ X\A, then we deduce that
∣∣B1/2(y)∩A

∣∣ ≤ 3. By the definition of y, we have

y ̸∈ B1/2(y)∩A, so there exists ε > 0 such that Bε(y)∩A = /0. This concludes that y is not a limit

point of A.

Example 2.14. It is possible for a topological space to be limit point compact but not compact. For

example, consider the space [0,1) (i.e. the half-open interval) with the usual topology inherited from

R.

Note that any infinite subset of [0,1) will accumulate near 1 since there is no point beyond 1 to

escape to. Hence, every infinite subset will have a limit point in [0,1), making the space limit point

compact. However, recall from MA2108 that [0,1) is not compact because the open cover consisting

of intervals (1/n,1) for n = 1,2, . . . covers [0,1), but no finite subcover can cover the entire space.
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Proposition 2.10. If X is compact, then it is limit point compact.

Definition 2.10 (sequential compactness). Let X be a topological space. X is sequentially

compact if every sequence in X has a convergent subsequence.

Proposition 2.11. If X is sequentially compact, then X is limit point compact.

Proof. Let A be an infinite subset of X . So, we can construct a sequence {xn} of points in A. By

sequential compactness of X , the sequence {xn} has a convergent subsequence {xnk} with limit x ∈ X .

It suffices to show that x is a limit point of A. Suppose on the contrary that x is not a limit point

of A. Then, there exists an open neighbourhood U of x such that U ∩ (A\{x}) = /0. However, since

xnk → x, we must have infinitely many terms of xnk lie in U , contradicting the earlier statement that

U ∩ (A\{x}) = /0. So, x must be a limit point of A.

Definition 2.11 (Lebesgue number). Let X be a metric space and let U be an open cover of

X . δ > 0 is a Lebesgue number for U if for all subsets S ⊆ X such that diam(S)< δ , there exists

U ∈ U such that S ⊆U .

Example 2.15 (real line with open intervals). Let X = [0,1] ⊆ R be endowed with the usual

Euclidean metric, and consider the open cover

U =

{(
−1

2
,1
)
,

(
0,

3
4

)
,

(
1
4
,
3
2

)}
.

For this cover of X , we need to find a number δ > 0 such that any subset S ⊆ [0,1] with diam(S)< δ

is fully contained in at least one set in U .

Observe that the interval [0,1] is fully contained within the union of the sets in U . We see that δ = 1/4

works as a Lebesgue number for U since any subset of [0,1] with diameter less than 1/4 will lie within

one of the intervals in U . In fact, choosing any 0 < δ < 1/4 works too.

Example 2.16 (circle with open arcs). Let X = S1 to be the unit circle with the metric induced by the

Euclidean distance in R2. Consider an open cover of S1 made up of three open arcs U = {U1,U2,U3},

where each Ui is an open arc covering roughly one third of the circle but with overlap. From this

cover, we can choose a Lebesgue number δ to be the length of the shortest arc among U1,U2,U3.

Here, since each open set overlaps with the others enough to cover any subset of S1 with sufficiently

small diameter, δ can be chosen to be approximately one-third of the circumference of S1.

Example 2.17 (finite discrete space). Let X = {1,2,3} be a discrete metric space endowed with the

discrete metric. So, d (x,y) = 1 if x and y are distinct; d (x,y) = 0 otherwise. Let U = {{1} ,{2} ,{3}}
be an open cover of X . Then, any δ ≤ 1 works as a Lebesgue number for U since for any subset
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S ⊆ X = {1,2,3} with diam(S)< 1 must consist of a single point, which will be contained in one of

the open sets in U .

Lemma 2.2. If X is a sequentially compact metric space, then every open cover of X has a

Lebesgue number.

Definition 2.12 (totally bounded). A metric space X is totally bounded if

for all ε > 0 there exists a finite subcover of X by balls of radius ε.

Example 2.18 (closed interval in R). Let X = [0,1] ⊆ R be equipped with the standard Euclidean

metric d (x,y) = |x− y|. To check total boundedness, take any ε > 0. Since X is bounded, we can

cover [0,1] by a finite number of open intervals (balls as a generalisation) of radius ε . Specifically,

we can partition [0,1] into intervals of length ε or less and place a ball of radius ε at each endpoint of

these intervals.

Example 2.19 (closed balls in Rn). Naturally, we can extend Example 2.18 to closed balls in Rn. Let

X = B0 (R) to be the closed ball of radius R centred at the origin in Rn equipped with the Euclidean

metric, i.e.

X = B0 (R) = {x ∈ Rn : ∥x∥ ≤ R} .

It is easy to show that X is totally bounded, i.e. cover B0 (R) by a finite number of balls of radius ε .

One way to do this is by constructing a lattice of points within the ball where each point is separated

by less than ε . The compactness of the closed ball ensures that we only need a finite number of these

lattice points to cover B0 (R) with balls of radius ε .

Lemma 2.3. If X is sequentially compact and metrizable, then X is totally bounded.

Proof. Suppose on the contrary that X is not totally bounded, i.e. there exists ε0 > 0 such that X does

not admit a finite cover by ε0-balls. Consider the following sequence:

x1 ∈ X

x2 ∈ X\Bε0 (x1)

x3 ∈ \(Bε0 (x1)∪Bε0 (x2))

so in general, we have

xn ∈ X\

(
n−1⋃
i=1

Bε0 (xi)

)
.

All these give a sequence {xn}∞

n=1 in X . Note that if i ̸= j, then d
(
xi,x j

)
≥ ε , so for all x ∈ X , Bε/2 (x)

contains at most one xi. As such, {xn}∞

n=1 has no convergent subsequence, contradicting that X is not

sequentially compact.
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Theorem 2.2. If X is metrizable, then the following are equivalent:

(i) X is compact

(ii) X is limit point compact

(iii) X is sequentially compact

Corollary 2.4. Let

f : (X ,dX)→ (Y,dY ) be continuous.

If X is compact, then f is uniformly continuous.

2.5. Complete and Totally Bounded Metric Spaces

Proposition 2.12. If X is totally bounded, then X has finite diameter.

Example 2.20. Rn equipped with the Lp metric has infinite diameter, so it is not totally bounded.

Example 2.21. Let (X ,d) be a metric space and define

ρ (x,y) =
d (x,y)

1+d (x,y)
.

Prove that (X ,ρ) is totally bounded if and only if (X ,d) is totally bounded.

Proof. We first prove the forward direction. Suppose for every ε > 0, there exists a finite cover of X

by open ρ-balls of radius ε . Let δ > 0 be arbitrary. Then, as

d (x,y) =
ρ (x,y)

1−ρ (x,y)
,

for any δ > 0, there exists ε > 0 such that δ = ε/(1− ε), which is equivalent to saying that ε =

δ/(1+δ ). If ρ (x,y)< ε , then

d (x,y)<
ε

1− ε
= δ

which shows that (X ,d) is totally bounded.

We then prove the reverse direction. Suppose δ > 0 is arbitrary. Then, there exists ε > 0 such that

ε = δ . So,

d (x,y)< δ implies ρ (x,y) =
d (x,y)

1+d (x,y)
< d (x,y)< δ = ε

which shows that any open d-ball of radius δ around a point x is contained within an open p-ball of

radius ε around the same point x. This shows that (X ,ρ) is totally bounded.
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Definition 2.13 (Cauchy sequence and convergence). Let (X ,d) be a metric space. A

sequence of points {xi}∞

i=1 is a Cauchy sequence if for all ε > 0, there exists N > 0 such hat

d (xn,xm)< ε for all m,n > N. A metric space is complete if every Cauchy sequence converges.

Example 2.22. Rn with respect to the Lp metric for p ∈ [1,∞] is complete.

Example 2.23. Equipped with the standard metric on R restricted to Q, we see that Q is not

complete. Since Q ⊆ R is dense, there exists a sequence in Q that converges in R to an irrational

number. Such sequences are Cauchy but do not have a convergent subsequence in Q.

Example 2.24. Let d be the standard metric on R and ρ be the metric on R given by

ρ (x,y) =
d (x,y)

1+d (x,y)
.

Also, D is the metric on ∏ZR= Rω given by

D(x,y) = sup
{

ρ (πk(x),πk(y))
k

: k ∈ Z+

}
where πk : Rω → R is the projection to the kth factor.

Recall that the topology on Rω induced by D is the product topology. We note that (Rω ,D) is a

complete metric space, which follows from the fact that (R,ρ) is complete.

Theorem 2.3. A metric space (X ,d) is compact if and only if it is complete and totally

bounded.

Corollary 2.5 (Heine-Borel theorem). A subspace G ⊆Rn is compact if and only if it is closed

and bounded.

2.6. Local Compactness

Definition 2.14 (local compactness). A topological space is locally compact at x ∈ X if there

exists a compact set C ⊆ X and an open set U ⊆ X such that x ∈U ⊆C. If X is locally compact

at every x ∈ X , then X is locally compact.

Example 2.25. X = Rn is locally compact. To see why, for every x ∈ X , Bε (x) is closed and

bounded, hence compact. Take

U = Bε (x) which is open and C = Bε (x) which is compact.

Note that x ∈U ⊆C. Since Rn is locally compact at every x ∈ Rn, then X is locally compact.

Example 2.26. Q ⊆ R is not locally compact. To see why, let U ⊆ Q be an open set. It suffices to

show that any C ⊆Q that contains U is not compact. We shall use the following facts:

Q is dense and R\Q is dense.
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Since U ⊆ Q is open, there exist a,b ∈ R such that a < b and (a,b)∩Q ⊆ U . So, there exists a

sequence {xi}∞

i=1 in U such that xi → p ∈ (a,b) ∈ R\Q. So, any subsequence of xi converges to p in

R, implying that no subsequence of xi converges in Q.

As such, if C ⊆ Q contains U , then xi lies in C, but does not have a convergent subsequence in C.

Hence, C is not compact.

Example 2.27. Rω equipped with the product topology is not locally compact. Let U ⊆Rω be open.

In a similar fashion, it suffices to show that if C ⊆ Rω is a set that contains U , then C is not compact.

Suppose on the contrary that there exists C ⊆ Rω compact such that U ⊆ C. Recall that R is a

Hausdorff space, so Rω is also Hausdorff, which shows that C is closed in Rω .

Since U is open, there exists a finite subset of Z+ and ai < bi for every i ∈ Λ such that

B = ∏
i∈Λ

(ai,bi)∗ ∏
i∈Z+\Λ

R⊆U ⊆C.

This shows that

B = ∏
i∈Λ

[ai,bi]∗ ∏
i∈Z+\Λ

R⊆C implying that B is compact.

However, B is not sequentially compact as the sequence {xi}∞

i=1 in B given by π1 (xn) = ai for all i ∈ Λ

and πi (xn) = n for all i ∈ Z+\Λ has no convergent subsequence.

Theorem 2.4. Let X be a topological space. X is locally compact and Hausdorff if and only if

there exists a compact Hausdorff space Y and a map hY : X → Y such that

hY is a homeomorphism onto its image and Y\hY (X) is a single point.

Definition 2.15 (compactification and Alexandroff compactification). Suppose Y is a

compact, Hausdorff space, and there exists a map h : X → Y such that h(X) = Y , and h is a

homeomorphism onto its image, then Y is a compactification of X .

Furthermore, if Y\hY (X) is a point, then Y is the one-point compactification of X (also

known as Alexandroff compactification).

Example 2.28 (one-point compactification from Rn to Sn). Say we add a point at infinity to R.

The one-point compactification of R is homeomorphic to the circle S1. To see why, R can be wrapped

around to meet at the point at infinity, forming a closed loop.
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We can generalise this concept to the one-point compactification of Rn. The one-point compactifica-

tion of Rn is homeomorphic to the n-dimensionl sphere Sn. This transforms the unbounded Euclidean

space into a compact, closed surface.

Example 2.29 (one-point compactification from C to C∪{∞}). Say we add a point at infinity to

C. The result is a one-point compactification of the complex plane, which is the Riemann sphere. This

is a model for the extended complex plane C∪{∞} (will see again in MA3211S/MA5217).

Example 2.30. Let

D=
{
(x,y) : x2 + y2 < 1

}
denote the open unit disc.

Then, D and S2 are compactifications of D. Here, D denotes the closure of D — it includes all the

points of D along with its boundary, i.e.

D=
{
(x,y) : x2 + y2 ≤ 1

}
.

D is compact in R2 as it is both closed (contains all limit points of D) and bounded.

In particular, S2 is the one-point compactification of D. Here, S2 denotes the two-dimensional sphere.

The idea here is to add a single point at infinity to D to form a compact space. This point at infinity

intuitively brings together all the directions along which point in D could escape if it were left open.

Proposition 2.13. Let X be a Hausdorff topological space. Then, X is locally compact is

equivalent to saying that for any x ∈ X , for any open U ⊆ X such that x ∈U , there exists open

V ⊆ X such that

x ∈V,V ⊆U and V is compact.

Corollary 2.6. Let X be a locally compact topological space. If

A ⊆ X is closed or X is Hausdorff and A is open,

then A is locally compact.

Corollary 2.7. X is a homeomorphism to an open subset of a compact Hausdorff space if and

only if X is locally compact and Hausdorff.

2.7. Spaces of Maps and Metric Completion

Definition 2.16 (uniform metric and uniform topology). Let (Y,d) be a metric space and ρ

be the metric on Y given by

ρ (x,y) =
d (x,y)

1+d (x,y)
.
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The uniform metric on

Y Λ = ∏
α∈Λ

Y

is the metric given by

ρ (x,y) = sup{ρ (πα (x) ,πα (y)) : α ∈ Λ} .

The uniform topology on Y Λ is the topology generated by the uniform metric.

Remark 2.3. The uniform topology on Rλ is finer than the product topology but coarser than

the box topology; these three topologies are all different if Λ is infinite.

Proposition 2.14. If (Y,d) is complete, then
(
Y Λ,ρ

)
is complete.

Let X be a topological space and (Y,d) be a metric space. Define

C (X ,Y ) =
{

f ∈ Y X : f is continuous
}

B (X ,Y ) =
{

f ∈ Y X : f (X)⊆ Y has bounded diameter
}

Theorem 2.5. C (X ,Y ) ,B (X ,Y ) ⊆ Y X are closed in the uniform topology. In particular, if

(Y,d) is complete, then so are (C (X ,Y ) ,ρ) and (B (X ,Y ) ,ρ).

Definition 2.17 (supremum metric). Let B (X ,Y ) be the set of functions f in Y X such that

f (X)⊆ Y has bounded diameter. Define the supremum metric dsup on B (X ,Y ) by

dsup ( f ,g) = sup{d ( f (x) ,g(x)) : x ∈ X} .

Definition 2.18 (isometric embedding and isometry). Let (X ,dX) and (Y,dY ) be two metric

spaces. We say that

f : (X ,dX)→ (Y,dY ) is an isometric embedding

if

dX (a,b) = dY ( f (a) , f (b)) .

We say that f is an isometry if it is a surjective isometric embedding.

Definition 2.19 (metric completion). If (X ,dX) is a metric space, then a metric completion of

X is a complete metric space (Y,dY ) and an isometric embedding φ : X →Y such that φ (X) =Y .
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3. Further Properties of Topological Spaces

3.1. Connectedness in Topological Spaces

Definition 3.1 (separation and connectedness). Let X be a topological space. A separation of

X is a pair U,V of disjoint, non-empty open subsets of X such that X =U ∪V . X is connected

if there does not exist a separation of X .

Proposition 3.1. X is connected if and only if the only sets in X that are open and closed are

/0 and X .

Proof. We first prove the forward direction. Suppose X is a connected topological space. Let U ⊆ X

be an arbitrary open and closed set. Then, X\U is also open and closed. Since

U ∪ (X\U) = X and U ∩ (X\U) = /0,

it follows that if U ̸= /0 or X , then U,X\U is a separation of X . Since X is connected, then the only

open and closed sets in X are /0 and X .

We then prove the reverse direction. Suppose on the contrary that X is not connected. Then, there

exist non-empty open sets U,V ⊆ X such that U ∩V = /0 and U ∪V = X . It follows that U ̸= /0,X .

Example 3.1. The trivial topology is connected.

Example 3.2. [−1,0)∪ (0,1] ⊆ X is not connected with respect to the standard topology. This is

simply because

[−1,0)∪ (0,1] is the disjoint union of [−1,0) and (0,1] .

Example 3.3. Q⊆ R is not connected with respect to the standard topology.

Example 3.4. (a,b)⊆ R is connected. The same claim can be made for (a,b] , [a,b) , [a,b].

To see why the open interval (a,b) is connected, we shall argue by contradiction. Suppose on the

contrary that (a,b) is not connected. Then, there exist non-empty open sets U,V ⊆ (a,b) such that

U ∪V = (a,b) and U ∩V = /0.

Let c ∈U and d ∈V . Without loss of generality, assume that c < d. Then, define

e = sup{x ∈U : x < d} .

If e ∈U , then e < d, so there exists x ∈U such that e < x < d. However, this contradicts the definition

of e.

On the other hand, if e ̸∈U , then e ∈V , i.e. there exists ε > 0 such that (e− ε,e+ ε)⊆V . Hence, if
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x ∈U and x < d, then x < e− ε and so,

e = sup{x ∈U : x > d}< e− ε

which yields a contradiction again.

Example 3.5. If U,V ⊆ X is a separation of X and Y ⊆ X is a connected subspace, prove that

Y ⊆U or Y ⊆V.

Solution. Since U,V is a separation of X , then we must have

X =U ∪V and U ∩V = /0.

Here, U,V are non-empty. Since Y ⊆ X is a connected subspace, then we must have Y ⊆ U ∪V . If

Y ⊆U , then we must have Y ⊊ V , otherwise it would contradict that U ∩V = /0; similarly, if Y ⊆ V ,

then we must have Y ⊊U , otherwise it would contradict that U ∩V = /0 too. □

Proposition 3.2. Let X be a topological space. Then, the following hold:

(i) If {Aα}α∈Λ
is a collection of connected subsets of X such that

⋂
α∈Λ

Aα ̸= /0 then
⋃

α∈Λ

Aα ⊆ X is connected

(ii) If A ⊆ X is connected and A ⊆ B ⊆ A, then B is connected

(iii) If f : X → Y is continuous and A ⊆ X is connected, then

f (A)⊆ Y is connected.

(iv) If

X ,Y are connected then X ×Y is connected.

Definition 3.2 (path and path-connectedness). Given x,y in a topological space X , a path

from x to y is

a continuous map f : [a,b]→ X such that f (a) = x and f (b) = y.

X is path-connected if for all x,y ∈ X , there exists a path from x to y.

Proposition 3.3. If X is path-connected, then X is connected.

Proof. We shall prove the contrapositive statement instead. Suppose X is not connected. Then, there

exists a separation of X , i.e. for any U,V ⊆ X , we have

U ∪V = X and U ∩V = /0.
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Here, U,V are assumed to be non-empty. Let x ∈U ⊆ X and y ∈V ⊆ X and suppose on the contrary

that there exists a path f from x to y, i.e. f (0) = x and f (1) = y.

Since f is continuous and [0,1]⊆R is connected, then the image f ([0,1])⊆X must also be connected

by (iii) of Proposition 3.2. So, f ([0,1]) lies entirely in U or V . However, U ∩V = /0, contradicting that

f (0) ∈U and f (1) ∈V . As such, no such path f exists. So, f is not path-connected.

We will see in Example 3.6 (by considering the Topologist’s sine curve) that the converse of

Proposition 3.3 is not true in general.

Example 3.6 (Topologist’s sine curve). Let S be defined as

S =

{
(x,y) ∈ R2 : y = sin

(
2π

x

)
: 0 < x ≤ 1

}
.

−1

1

x

y

Figure 1: Topologist’s sine curve

Let f : (0,1]→ S be defined as

t 7→
(

t,sin
(

2π

t

))
.

This gives that S = f ((0,1]) is path-connected, and thus connected. In particular,

S = S∪ ({0}× [−1,1]) is connected.

However, S is not path-connected! To see why, suppose on the contrary that there exists a path p :

[0,1]→ S such that

p(0) = (0,0) and p(1) = (1,0) .

Since {0}× [−1,1]⊆ R2 is closed, it shows that {0}× [−1,1]⊆ S is closed. As such,

p−1 ({0}× [−1,1])⊆ [0,1] is closed.
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In particular, this shows that p−1 ({0}× [−1,1]) ⊆ [0,1] has a maximum, which is denoted by b.

Consider the restriction of p, i.e.

p|[b,1] → S where t 7→ (p1 (t) , p2 (t)) .

Then, p(b) ∈ {0}× [−1,1] but p((b,1])⊆ S. Observe that

lim
t→b

p1 (t) = p1 (b) = 0 and for all t > b we have p2 (t) = sin
(

2π

t

)
= sin

(
2π

p1 (t)

)
.

The first statement implies there exists a decreasing sequence ti → b such that

p1 (ti) =
1

i+(−1)i /4
,

whereas the second statement implies

p2 (ti) = sin
(

2πi+(−1)i · π

2

)
= (−1)i .

As such,

p(ti) =

(
1

i+(−1)i /4
,(−1)i

)
which does not converge.

3.2. Connected Components

Definition 3.3 (connected component). Let X be a topological space. For any x,y ∈ X , define

an equivalence relation ∼ if there exists a connected subset C ⊆ X such that x,y ∈ C. The

equivalence classes of ∼ are the connected components of X .

Proposition 3.4. Every connected component of X is connected.

Definition 3.4 (path component). Let X be a topological space. For any x,y ∈ X , define

x
p∼ y if there exists a path in X from x to y.

The equivalence classes of
p∼ are called path components.

Definition 3.5 (locally connected). Let X be a topological space and x ∈ X . Then, X is locally

connected at x if for all open sets U ⊆ X containing x, there exists a connected open set V ⊆ X

such that x ∈V ⊆U .

X is locally connected if it is locally connected at every x ∈ X .

Definition 3.5 also holds if we change ‘locally connected’ to ‘locally path-connected’.

Example 3.7. (0,1)⊆ R is connected and locally connected.
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Example 3.8. (0,1)∪ (1,2) is not connected but locally connected.

Example 3.9. The Topologist’s sine curve is connected but not locally connected.

Example 3.10. Q⊆ R is neither connected nor locally connected.

Proposition 3.5. A topological space X is locally connected if and only if for all open U ⊆ X ,

each connected component of U is open in X .

Proposition 3.6. Let X be a topological space. If X is locally path-connected, then the

connected components and path components are the same.

3.3. Countability Axioms

Definition 3.6 (second countable space). A topological space X is second countable if it has

a countable basis.

To put it more precisely, Definition 3.6 means that a topological space X is second countable if

there exists some countable collection U = {Ui}∞

i=1 of open sets in X such that every open subset of

X can be written as a union of elements in U .

Proposition 3.7. X is second countable implies X is first countable.

Example 3.11. Rn is second countable since

{Br (x) : r ∈Q,x ∈Qn} is a countable basis for Rn.

Example 3.12. Rω equipped with the product topology is second countable as

{
∏
n∈Λ

(an,bn)× ∏
n∈Z\Λ

R : Λ is finite : an < bn,an,bn ∈Q for all n ∈ Λ

}

is a countable basis.

Definition 3.7 (Lindelöf space). X is a Lindelöf space if every open cover has a countable

subcover.

Proposition 3.8. Suppose X is second countable. Then, the following hold:

(i) X is Lindelöf

(ii) There exists a countable subset A ⊆ X that is dense, i.e. A = X
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3.4. Separation Axioms

Definition 3.8 (T3 space). A T1 topological space X is regular or T3 if for every x ∈ X and

every closed B ⊆ X such that x ̸∈ B, there exist disjoint open sets U,V ⊆ X such that

x ∈U and B ⊆V.

Definition 3.9 (T4 space). A T1 topological space X is normal or T4 if for every closed and

disjoint A,B ⊆ X , there exist disjoint open sets U,V ⊆ X such that

A ⊆U and B ⊆V.

Remark 3.1. T4 =⇒ T3 =⇒ T2 =⇒ T1

Proposition 3.9. Suppose X is a topological space. X is T3 if and only if for all x ∈ X , for all

U ⊆ X containing x, there exists an open set V ⊆ X containing x such that V ⊆U .

Proposition 3.10. Every metrizable space is normal.

Proposition 3.11. If X is a T3 space with a countable basis, then X is T4.

Proof. Let B ⊆ X be a countable basis for X and

A and B are disjoint closed sets.

We wish to show that A and B have disjoint open neighbourhoods. By the definition of a T3 space, for

every x ∈ A, there exists an open set Ux ⊆ X such that x ∈U and Ux ∩B = /0.

Since X is T3, then there exists Vx ⊆ Ux such that Vx is open and x ∈ Vx ⊆ Vx ⊆ Ux. Let Wx ∈ B
such that x ∈Wx ⊆Vx and define the basis B′ to be as follows:

B′ = {Wx ∈ B : x ∈ A} so B′ is a countable subcover.

We have

B∩W = /0 for all W ∈ B′.

Using a similar method, there exists a countable subset

B′′ ⊆ B such that A∩W = /0 for all W ∈ B′′.

Since B′ and B′′ are countable, then we can enumerate them as follows:

B′ = {A1,A2, . . .} and B′′ = {B1,B2, . . .}



MA3209 METRIC AND TOPOLOGICAL SPACES Page 62 of 65

Let

A′
n = An\

n⋃
i=1

Bi and B′
n = Bn\

n⋃
i=1

Ai.

Then, define

UA =
∞⋃

i=1

A′
n and UB =

∞⋃
i=1

B′
n.

Recall that A∩Bi = /0 for all i. Hence, A∩Ai = A∩A′
i, which implies

A =
∞⋃

i=1

(A∩Ai) =
∞⋃

i=1

(
A∩A′

i
)
⊆

∞⋃
i=1

A′
i =UA.

Suppose there exists x ∈UA ∩UB. Then, there exists n,m ∈ N such that x ∈ A′
n ∩B′

m. Hence,

x ∈ An and x ̸∈
n⋃

i=1

Bi.

Concurrently, we also have

x ∈ Bn and x ̸∈
m⋃

i=1

Ai.

However, since x ∈ An and x ∈ Bm, it implies that x ∈ A∩B, contradicting the fact that A∩B = /0. We

conclude that UA ∩UB = /0.
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4. Urysohn’s Metrization Theorem and Tychonoff’s Theorem

4.1. Urysohn’s Metrization Theorem

Theorem 4.1 (Urysohn metrization theorem). If X is a regular topological space with a

countable basis, then it is metrizable.

Definition 4.1. Let A,B ⊆ X . We say that A and B are separated by a continuous function if

there exists a continuous f : X → [0,1] such that f (A) = 0 and f (B) = 1.

Example 4.1. An example of two sets A and B separated by a continuous function can be constructed

in R. Consider the sets A = [0,1] and B = [2,3].

Define the continuous function f : R→ [0,1] as follows:

f (x) =


0 if x ∈ [0,1];

1 if x ∈ [2,3];

x−1 if x ∈ (1,2)

which is continuous on R.

Moreover, f (A) = 0 and f (B) = 1, and thus separates the sets A and B.

Definition 4.2 (T3 1
2

space). X is completely regular or T3 1
2

if it is T1 and for every x ∈ X and

closed A ⊆ X such that x ̸∈ A, we have

{x} and A are separated by a continuous function.

Definition 4.3 (T5 space). X is completely normal or T5 if it is T1 and for every disjoint closed

sets A and B, we have

A and B are separated by a continuous function.

Example 4.2. X is T3 1
2

implies X is T3.

Example 4.3. X is T5 implies X is T4.

Lemma 4.1 (Urysohn’s lemma). Let X be a T4 space and A,B be closed disjoint subsets of X .

Let [a,b] be a closed interval of R. Then, there exists a continuous map f : X → [a,b] such that

f (x) =

a for every x ∈ A;

b for every x ∈ B.
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Definition 4.4 (topological embedding). Let X ,Y be two topological spaces and f : X → Y

be an injective continuous map. We say that

f is a topological embedding if f is a homeomorphism between X and f (X) .

Lemma 4.2. Let X be a topological space. Suppose { fα}α∈Λ
is a family of continuous

functions from X to R satisfying the following property: for all x ∈ X and open U ⊆ X such

that x ∈U , there exists α ∈ Λ such that

fα (x)> 0 and fα (X\U) = {0} .

Then, the map

F : X → RΛ where x 7→ ( fα (x))
α∈Λ

is an embedding of X into RΛ.

4.2. Tychonoff’s Theorem

Theorem 4.2 (Tychonoff’s theorem). The product of compact spaces is compact.

Note that Tychonoff’s theorem (Theorem 4.2) is equivalent to saying the following: if {Xα}α∈Λ

is a family of compact spaces, then

X = ∏
α∈Λ

Xα is compact with respect to the product topology.
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5. The Arzela-Ascoli Theorem

5.1. The Compact-Open Topology

5.2. Equicontinuity
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